Skip to main content

Neutron Scattering in Magnetism: Fundamentals and Examples

  • Chapter
  • First Online:
Magnetic Measurement Techniques for Materials Characterization
  • 3061 Accesses

Abstract

In this chapter, an up-to-date survey of theoretical concepts and experimental results in the field of the neutron scattering techniques applied to magnetism, and their relevance to experiments in real materials, is presented. Main emphasis of the chapter is to enlarge the use of these techniques among the researchers (physicist, chemists, engineers, etc.) in the area of magnetism and magnetic materials. For that reason we do not enter deeply in topics as neutron production, neutron optics, detectors, instrumentation, etc., but we focused the chapter on the neutron scattering applications in such a field.

Along this chapter, together with some basic concept on quantum mechanics, solid-state physics, magnetism, and symmetry, we introduce the main theoretical concepts, peculiarities, and language, of the neutron scattering techniques, and we particularize it to the crystalline matter. In a second part, we briefly introduce the most commonly employed techniques (powder diffraction, single crystal diffraction, polarization analysis, inelastic, SANS, reflectivity, etc.) and how these techniques are applied to understand different magnetic phenomena and magnetic materials, trying to cover a large variety of topics with interest in magnetism. Every time, the examples showed here show how neutrons can enlighten problems that are quasi-impossible to be solved with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Occasionally, the symbol h will be used to denote one of the Miller indices, but the context will resolve any ambiguity.

  2. 2.

    Note that since we are dealing with s-wave scattering, the total spin of the system is conserved.

  3. 3.

    The scattering function is also called response function, dynamic scattering function, dynamic structure factor, or scattering law.

  4. 4.

    These expressions have to be manipulated carefully, since the Heisenberg operators \(\vec {R}_n(0)\) and \(\vec {R}_{n^{\prime }}(t)\) do not commute for t ≠ 0. For instance,

    $$\displaystyle \begin{aligned} \exp\{-{\mathrm{i}2\pi}\vec{q}\cdot\vec{R}_n(0)\}\exp\{{\mathrm{i}2\pi}\vec{q}\cdot\vec{R}_{n^{\prime}}(t)\}\neq\exp\{{\mathrm{i}2\pi}\vec{q}\cdot[\vec{R}_{n^{\prime}}(t)-\vec{R}_n(0)]\}. \end{aligned}$$
  5. 5.

    Equivalently the elastic nuclear scattering can be obtained from the t → limit of Eq. (47).

  6. 6.

    Notice that the electrostatic energy operator commutes with the spin of each electron separately (but not with the single electron orbital angular momentum). At first sight, it seems that the multi-electron states can be characterized by the single-electron spins, not just by the total spin. However, the individual spins are not observables since the electrons are indistinguishable, and the single-electron spin states are not good quantum numbers. Indeed, the single-electron spin states are mixed in the antisymmetrization process, as can be seen in Eq. (107).

  7. 7.

    Let us recall that the spherical components of a vector operator \(\vec {V}\) are denoted by V M, with M = −1,  0,  1, and defined as \(V_{\pm 1}=\mp (V_x\pm {\mathrm {i}} V_y)/\sqrt {2}\) and V 0 = V z.

  8. 8.

    Other authors define the magnetic structure factor for the crystal by keeping the sum on the unit cells, l and l , in Eq. (142) in its definition.

  9. 9.

    Notice that this correlation is independent of time. The 1∕J 2 terms have to be neglected in the linear approximation for consistency. Higher-order corrections guarantee that the second equality in (157) holds to all orders in the 1∕J expansion.

  10. 10.

    The FullProf Suite has the necessary software to accomplish these tasks.

  11. 11.

    Notice that 1 cm3 contains ∼109 crystallites with size ∼10 μm or ∼1012 crystallites with size ∼1 μm.

  12. 12.

    In helical structures, driven by magnetic frustration, the period is usually shorter.

  13. 13.

    If these experiments are done in a magnetically ordered crystal, then the nuclear and magnetic lattices need to be the same.

  14. 14.

    ΔM S = ±1.

References

  1. C. Abel et al., Phys. Rev. Lett. 124, 081803 (2020)

    Article  CAS  Google Scholar 

  2. R.G. Newton, Scattering Theory of Waves and Particles (Dover Publications, Mineloa, New York, 2002)

    Google Scholar 

  3. A. Galindo, P. Pascual, Quantum Mechanics II (Springer, Berlin, 1990)

    Google Scholar 

  4. E. Fermi, Ric. Sci. 7 13 (1936)

    CAS  Google Scholar 

  5. J. Schwinger, E. Teller, Phys. Rev. 52, 286 (1937)

    Article  CAS  Google Scholar 

  6. F. Bloch, Phys. Rev. 50, 259 (1936)

    Article  CAS  Google Scholar 

  7. F. Bloch, Phys. Rev. 51, 994 (1937)

    Article  CAS  Google Scholar 

  8. J. Schwinger, Phys. Rev. 51, 544 (1937)

    Article  CAS  Google Scholar 

  9. L. Van Hove, Phys. Rev. 95, 249 (1954)

    Article  Google Scholar 

  10. N.H. March, M.P. Tosi, Introduction to Liquid State Physics (World Scientific, Singapore, 2002)

    Book  Google Scholar 

  11. N.W. Ashcroft, N. David Mermin, Solid State Physics (Harcourt, San Diego, 1976)

    Google Scholar 

  12. O. Halpern, M.H. Johnson, Phys. Rev. 55, 898 (1939)

    Article  CAS  Google Scholar 

  13. E.U. Condon, H. Odabasi, Atomic Structure (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  14. S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, vol. 2 (Oxford University Press, Clarendon, Oxford, 1984)

    Google Scholar 

  15. D.F. Johnston, Proc. Phys. Soc. 88, 37 (1966)

    Article  CAS  Google Scholar 

  16. B. Fultz, Progr. Mater. Sci. 55, 247–352 (2010)

    Article  CAS  Google Scholar 

  17. F. Bloch, Z. Phys. A 61, 206–219 (1939)

    Google Scholar 

  18. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  Google Scholar 

  19. S.V. Maleev, Zh. Eksperim. i Teor. Fiz. 33, 129 (1958)

    Google Scholar 

  20. S.V. Maleev, Zh. Eksperim. i Teor. Fiz. 40, 1224 (1961)

    Google Scholar 

  21. A.W. Saenz, Phys. Rev. 119, 1542 (1960)

    Article  Google Scholar 

  22. Yu.A. Izyumov, S.V. Maleev, Zh. Eksperim. i Teor. Fiz. 41, 1644 (1961)

    CAS  Google Scholar 

  23. Yu.A. Izyumov, Usp. Fiz. Nauk. 80, 41 (1963)

    Article  CAS  Google Scholar 

  24. M. Blume, Phys. Rev. 130:1670, 1963.

    Article  Google Scholar 

  25. M. Blume, Phys. Rev. 133, A1366 (1964)

    Article  Google Scholar 

  26. M.R.I. Schermer, M. Blume, Phys. Rev. 166, 554 (1968)

    Article  Google Scholar 

  27. V.G. Barýaktar S.V. Maleev, P.A. Suris, Sov. Phys. Solid State 4, 2533 (1963)

    Google Scholar 

  28. V.E. Naish Yu.A. Izyumov, R.P. Ozerov, (CRC Press, Taylor & Francis, New York, 1991)

    Google Scholar 

  29. H.M. Rietveld, Appl. Crystallogr. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  30. R.A.Young, M.P. Eackie, R.B. Von Dreele, Appl. Crystallogr. 10, 262–269 (1977)

    Article  Google Scholar 

  31. G. Malmros, J.O. Thomas, Appl. Crystallogr. 10, 7–11 (1977)

    Article  Google Scholar 

  32. J.B. Hastings D.E. Cox, W. Thomlinson, C.T. Prewill, Nucl. Instrum. Methods 208, 573–578 (1983)

    Article  Google Scholar 

  33. R.A. Young, (ed.), The Rietveld Method (Oxford University Press, Oxford, 1993)

    Google Scholar 

  34. W.I.F. David, K. Shankland, M.L.B, B. CH, (eds)., Structure Determination From Powder Diffraction Data (Oxford Science Publication, Oxford, 2002)

    Google Scholar 

  35. J.A. Rodríguez-Velamazán, O. Fabelo, A. Millán, J. Campo, R.D. Johnson, L. Chapon. Sci. Rep. 5, 14475 (2015)

    Article  CAS  Google Scholar 

  36. L. Desgranges, G. Baldinozzi, G. Rousseau, J.C. Niepce, G. Calvarin, Inorg. Chem. 48, 7585–7592 (2009)

    Article  CAS  Google Scholar 

  37. M.T. Hutchings, P.J. Withers, T.M. Holden, T. Lorentzen, (CRC Press, Taylor & Francis, London, 2005)

    Google Scholar 

  38. C.G. Shull, J. Samuel Smart, Phys. Rev 76, 1257 (1949)

    Article  Google Scholar 

  39. R.L. Carlin, F. Palacio, Coord. Chem. Rev. 65, 141 (1985)

    Article  CAS  Google Scholar 

  40. J.A. Puértolas, R. Navarro, F. Palacio, J. Bartolomé, D. González, R.L. Carlin, Phys. Rev. B 31(1), 516–526 (1985)

    Article  Google Scholar 

  41. F. Palacio, A. Paduan-Filho, R.L. Carlin, Phys. Rev. B 21(1), 296–298 (1980)

    Article  CAS  Google Scholar 

  42. Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975)

    Article  CAS  Google Scholar 

  43. S. Fishman, A. Aharony, J. Phys. C: Solid State Phys. 12(18), L729–L733 (1979)

    Google Scholar 

  44. F. Palacio, J. Campo, M.C. Morón, A. Paduan, C.C. Becerra, Int. J. Mod. Phys. B 12(18), 1781–1793 (1998)

    Article  CAS  Google Scholar 

  45. F. Palacio, M. Gabas, J. Campo, C.C. Becerra, A. Paduan-Filho, V.B. Barbeta, Phys. Rev. B 56(6), 3196 (1997)

    Article  CAS  Google Scholar 

  46. C.C. Becerra, V.B. Barbeta, A. Paduan-Filho, F. Palacio, J. Campo, M. Gabás, Phys. Rev. B 56(6), 3204 (1997)

    Article  CAS  Google Scholar 

  47. J. Campo, F. Palacio, M.C. Moron, C.C. Becerra, A. Paduan, J. Phys. Condens. Matter 11(22), 4409–4425 (1999)

    Article  CAS  Google Scholar 

  48. C.C. Becerra, V.B. Barbeta, A. Paduan, F. Palacio, J. Campo, M. Gabás, Phys. Rev. B 56(6), 3204–3211 (1997)

    Article  CAS  Google Scholar 

  49. M. Gabas, F. Palacio, J. Rodríguez Carvajal, D. Visser, J. Phys. Condens. Matter 7, 4725 (1995)

    Article  CAS  Google Scholar 

  50. A. Jain, S.M. Yusuf, J. Campo, L. Keller, Phys. Rev. B 79(18), 184428 (2009)

    Article  CAS  Google Scholar 

  51. G. Rousse, J. Rodríguez-Carvajal, C. Wurm, C. Masquelier, Phys. Rev. B 88(21), 214433 (2013)

    Article  CAS  Google Scholar 

  52. F. Hulligur, E. Pobitschka, J. Solid State Chem. 1, 117 (1970)

    Article  Google Scholar 

  53. S.S.P. Parkin, R.H. Friend, Philos. Mag. B 41, 65 (1980)

    Article  CAS  Google Scholar 

  54. S.S.P. Parkin, R.H. Friend, Philos. Mag. B 41, 95 (1980)

    Article  CAS  Google Scholar 

  55. Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, A. Ovchinnikov, J. Kishine, Phys. Rev. Lett. 108(10), 107202 (2012)

    Article  CAS  Google Scholar 

  56. V. Laliena, J. Campo, J.-I. Kishine, A.S. Ovchinnikov, Y. Togawa, Y. Kousaka, K. Inoue, Phys. Rev. B 93(13), 1420 (2016)

    Article  CAS  Google Scholar 

  57. V. Laliena, J. Campo, Y. Kousaka, Phys. Rev. B 95(22), 1420 (2017)

    Article  Google Scholar 

  58. V. Laliena, Y. Kato, G. Albalate, J. Campo, Phys. Rev. B 98(14), 144445 (2018)

    Article  CAS  Google Scholar 

  59. V. Laliena, J. Campo, Y. Kousaka, Phys. Rev. B 94(9), 960 (2016)

    Article  CAS  Google Scholar 

  60. B. van Laar, H.M. Rietveld, D.J.W. Ijdo, J. Solid State Chem. 3, 154 (1971)

    Article  Google Scholar 

  61. Y. Kousaka, T. Ogura, J. Zhang, P. Miao, S. Lee, S. Torii, T. Kamiyama, J. Campo, K. Inoue, J. Akimitsu, J. Phys. Conf. Ser. 746, 012061 (2016)

    Article  CAS  Google Scholar 

  62. P. Curie, J. Phys. 3(III), 393–415 (1894)

    Google Scholar 

  63. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426(6962), 55–58 (2003)

    Article  CAS  Google Scholar 

  64. R. Kajimoto, H. Yoshizawa, H. Shintani, T. Kimura, Y. Tokura, Phys. Rev. B 70(1), 916 (2004)

    Article  CAS  Google Scholar 

  65. T. Kimura, G. Lawes, T. Goto, Y. Tokura, A.P. Ramirez, Phys. Rev. B 71(22), 415 (2005)

    Article  CAS  Google Scholar 

  66. M. Kenzelmann, A.B. Harris, S. Jonas, C. Broholm, J. Schefer, S.B. Kim, C.L. Zhang, S.W. Cheong, O.P. Vajk, J.W. Lynn, Phys. Rev. Lett. 95(8), 87206 (2005)

    Article  CAS  Google Scholar 

  67. M. Ackermann, D. Brüning, T. Lorenz, P. Becker, L. Bohat, N. J. Phys. 15, 123001 (2013)

    Article  CAS  Google Scholar 

  68. J.A. Rodríguez-Velamazán, O. Fabelo, A. Millan, J. Campo, R.D. Johnson, L. Chapon, Sci. Rep. 5, 14475 (2015)

    Article  CAS  Google Scholar 

  69. W. Tian, H. Cao, J. Wang, F. Ye, M. Matsuda, J.Q. Yan, Y. Liu, V.O. Garlea, H.K. Agrawal, B.C. Chakoumakos, B.C. Sales, R.S. Fishman, J.A. Fernández-Baca, Phys. Rev. B 94, 214405 (2016)

    Article  Google Scholar 

  70. J. Campo, F. Palacio, A. Paduan-Filho, C.C. Becerra, M.T. Fernández Díaz, J. Rodríguez Carvajal, Phys. B 234, 622 (1997)

    Article  Google Scholar 

  71. J.A. Rodríguez-Velamazán, O. Fabelo, J. Campo, A. Millán, J. Rodríguez-Carvajal, L.C. Chapon, Phys. Rev. B 95, 174439 (2017)

    Article  Google Scholar 

  72. R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Nature (London) 365, 141 (1993)

    Article  CAS  Google Scholar 

  73. D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, Science 265, 1054 (1994)

    Article  CAS  Google Scholar 

  74. F. Luis, J. Bartolomé, J. Fernández, J. Tejada, J. Hernández, X. Zhang, R. Ziolo, Phys. Rev. B 55, 11449 (1997)

    Article  Google Scholar 

  75. J. Hernádez, X. Zhang, F. Luis, J. Bartolomé, J. Tejada, R. Ziolo, Europhys. Lett. 35:301, 1996.

    Article  Google Scholar 

  76. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature (London) 383, 145 (1996)

    Article  CAS  Google Scholar 

  77. J.R. Friedman, M.P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996)

    Article  CAS  Google Scholar 

  78. T. Lis, Acta Crystallogr. Sect. B 36, 2042, (1980)

    Article  Google Scholar 

  79. R.A. Robinson, P.J. Brown, D.N. Argyriou, D.N. Hendrickson, S.M.J. Aubin, J. Phys. Condens. Matter 12(12), 2805–2810 (2000)

    Article  CAS  Google Scholar 

  80. J. Fernández, J. Alonso, Phys. Rev. B 62, 53 (2000)

    Article  Google Scholar 

  81. F. Luis, J. Campo, J. Gómez, G. J. McIntyre, J. Luzón, D. Ruiz-Molina, Phys. Rev. Lett. 95, 227202 (2005)

    Article  CAS  Google Scholar 

  82. K. Inoue, K. Kikuchi, M.Ohba, Angew. Chem. 42, 4810–4813 (2003)

    Article  CAS  Google Scholar 

  83. H. Higashikawa, K. Okuda, J. Kishine, N. Masuhara, K. Inoue, Chem. Lett. 36, 1022–1023 (2007)

    Article  CAS  Google Scholar 

  84. C. González, J. Campo, F. Palacio, G.J. McIntyre, Y. Yoshida, K. Inoue, K. Kikuchi (2020) submitted for publication

    Google Scholar 

  85. Y. Yoshida, K. Inoue, K. Kikuchi, M. Kurmoo, Chem. Mater. 28, 7029–7038 (2016)

    Article  CAS  Google Scholar 

  86. R.M. Moon, T. Riste, W.C. Koehler, Phys. Rev. 181, 920 (1969)

    Article  CAS  Google Scholar 

  87. E. Ressouche, J.X. Boucherle, B. Gillon, P. Rey, J. Schweizer, J. Am. Chem. Soc. 115, 3610 (1993)

    Article  CAS  Google Scholar 

  88. P.J. Brown, A. Capiomont, B. Gillon, J. Schweizer, J. Magn. Magn. Mater. 14, 289 (1979)

    Article  CAS  Google Scholar 

  89. J.M. Rawson, A.J. Banister, I. Lavender, Adv. Heterocycl. Chem. 62, 137 (1995)

    Article  CAS  Google Scholar 

  90. M. Kinoshita, P. Turek, M. Tamura, K. Nozawa, D. Shiomi, Y. Nakazawa, M. Ishikawa, M. Takahashi, K. Awaga, T. Inabe, Y. Maruyama, Chem. Lett. 7, 1225 (1991)

    Article  Google Scholar 

  91. F. Palacio, G. Antorrena, M. Castro, R. Burriel, J.M. Rawson, J.N.B. Smith, N. Bricklebank, J. Novoa, C. Ritter. Phys. Rev. Lett. 79, 2336 (1997)

    Article  CAS  Google Scholar 

  92. J. Luzón, J. Campo, F. Palacio, G.J. McIntyre, J.M. Rawson, R.J. Less, C.M. Pask, A. Alberola, R.D. Farley, D.M. Murphy, A.E. Goeta, Phys. Rev. B 81, 144429 (2010)

    Article  CAS  Google Scholar 

  93. R.L. Carlin, R. Burriel, Phys. Rev. B 27, 3012 (1983)

    Article  CAS  Google Scholar 

  94. T. Smith, S.A. Friedberg, Phys. Rev. 177, 1012 (1969)

    Article  CAS  Google Scholar 

  95. M. Gabás, F. Palacio, J. Rodríguez-Carvajal, D. Visser, J. Phys. Condens. Matter 7, 4725 (1995)

    Article  Google Scholar 

  96. J. Luzón, J. Campo, F. Palacio, G.J. McIntyre, A. Millan, Phys. Rev. B 78, L279 (2008)

    Article  CAS  Google Scholar 

  97. R. Papoular, B. Gillon, Europhys. Lett. 13, 429 (1990)

    Article  CAS  Google Scholar 

  98. J.B. Forsyth, in Electron and Magnetization Densities in Molecules and Crystals, ed. by P. Becker (Plenum Press, New York, 1980), pp. 791–819

    Google Scholar 

  99. B.E.F. Fender, B.N. Figgis, J.B. Forsyth, P.A. Reynolds, E. Stevens, Proc. R. Soc. Lond. A 404, 127 (1986)

    Article  CAS  Google Scholar 

  100. B.E.F. Fender, B.N. Figgis, J.B. Forsyth, Proc. R. Soc. Lond. A 404, 139 (1986)

    Article  CAS  Google Scholar 

  101. R.J. Deeth, B.N. Figgis, J.B. Forsyth, E.S. Kucharski, P.A. Reynolds, Proc. R. Soc. Lond. A 421, 153 (1989)

    Article  CAS  Google Scholar 

  102. B.N. Figgis, J.B. Forsyth, E.S. Kucharski, P.A. Reynolds, F. Tasset, Proc. R. Soc. Lond. A 428, 113 (1990)

    Article  CAS  Google Scholar 

  103. R.J. Deeth, B.N. Figgis, J.B. Forsyth, E.S. Kucharski, P.A. Reynolds, Proc. R. Soc. Lond. A 436, 417 (1992)

    Article  Google Scholar 

  104. B.N. Figgis, P.A. Reynolds, Mol. Phys. 80, 1377 (1993)

    Article  CAS  Google Scholar 

  105. G.S. Chandler, B.N. Figgis, R.A. Phillips, P.A. Reynolds, R. Mason, G.A. Willians, Proc. Royal Soc. Lond. A 384, 31 (1982)

    Article  CAS  Google Scholar 

  106. B.N. Figgis, P.A. Reynolds, R. Mason, Proc. R. Soc. Lond. A 384, 49 (1982)

    Article  CAS  Google Scholar 

  107. F.A. Wedgwood, Proc. R. Soc. Lond. A 349, 447 (1976)

    Article  CAS  Google Scholar 

  108. P.J. Brown, B.N. Figgis, P.A. Reynolds, J. Phys. Condens. Matter 2, 5297 (1990)

    Article  CAS  Google Scholar 

  109. B.N. Figgis, P.A. Reynolds, R. Mason, Inorg. Chem. 23, 1149 (1984)

    Article  CAS  Google Scholar 

  110. A. Gukasov, P.J. Brown, J. Phys. Condens. Matter 14, 8831 (2002)

    Article  CAS  Google Scholar 

  111. A. Gukasov, P. Rogl, P. Brown, M. Mihalik, A. Menovsky, J. Phys. Condens. Matter 14, 8841 (2002)

    Article  CAS  Google Scholar 

  112. M. Th Rekveldt, J. Phys. Colloques. C1 32, 579 (1971).

    Google Scholar 

  113. G.M. Drabkin, A.I. Okorokov, V. Runov, V. Pisḿa, Zh. Eksp. Teor.Fiz. 15, 458 (1972)

    Google Scholar 

  114. A.I. Okorokov et al., Zh. Eksp. Teor. Fiz. 69, 590 (1975)

    CAS  Google Scholar 

  115. F. Tasset, Phys. B 156–157, 627 (1989)

    Article  Google Scholar 

  116. F. Tasset, P.J. Brown, E. Lelievre-Berna, T. Roberts, S. Pujol, J. Allibon, E. Bourgeat-Lami, Phys. B 267–268, 69 (1999)

    Article  Google Scholar 

  117. P.J. Brown, J.B. Forsyth, F. Tasset, Proc. R. Soc. Lond. A 442, 147 (1993)

    Article  CAS  Google Scholar 

  118. F. Tasset, Phys. B 297, 1 (2001)

    Article  CAS  Google Scholar 

  119. P.J. Brown, Phys. B 297, 198 (2001)

    Article  CAS  Google Scholar 

  120. P.J. Brown, J. Crangle, K.-U. Neumann, J.G. Smith, K.R.A. Ziebeck, J. Phys. Condens. Matter 9, 4729 (1997)

    Article  CAS  Google Scholar 

  121. P.J. Brown, Phys. B 14 (1993)

    Google Scholar 

  122. A.J. Clune, J. Nam, M. Lee, K.D. Hughey, W. Tian, J.A. Fernández-Baca, R.S. Fishman, J. Singleton, J.H. Lee, J.L. Musfeldt, Npj Quantum Mater. 1 (2019)

    Google Scholar 

  123. J.A. Rodríguez-Velamazán, O. Fabelo, J. Campo, J. Rodríguez Carvajal, N. Qureshi, L.C. Chapon, Sci. Rep. 8, 10665 (2018)

    Article  CAS  Google Scholar 

  124. S.W. Lovesey, J. Fernández-Rodríguez, J.A. Blanco, P.J. Brown, Phys. Rev. B 70, 172414 (2004)

    Article  CAS  Google Scholar 

  125. S.W. Lovesey, E. Balcar, K.S. Knight, J. Fernández, Phys. Rep. 411, 233 (2005)

    Article  CAS  Google Scholar 

  126. S. Ji, C. Song, J. Koo, K.-B. Lee, Y.J. Park, J.Y. Kim, J.H. Park, H.J. Shin, J.S. Rhyee, B.H. Oh, Phys. Rev. Lett. 91, 257205 (2003)

    Article  CAS  Google Scholar 

  127. J. Blanco, P. Brown, A. Stunault, K. Katsumata, F. Iga, S. Michimura, Phys. Rev. B 73, 212411 (2006)

    Article  CAS  Google Scholar 

  128. J. Fernández-Rodríguez, J.A. Blanco, P.J. Brown, K. Katsumata, A. Kikkawa, F. Iga, S. Michimura, Phys. Rev. B 72, 52407 (2005)

    Article  CAS  Google Scholar 

  129. B.K. Cho, J.S. Rhyee, J.Y. Kim, M. Emilia, O.C. Canfield, J. Appl. Phys. 97, 10923 (2005)

    Article  CAS  Google Scholar 

  130. S. Mühlbauer, D. Honecker, E.A. Périgo, F. Bergner, S. Disch, A. Heinemann, S. Erokhin, D. Berkov, C. Leighton, M.R. Eskildsen, A. Michels, Rev. Mod. Phys. 91, 1174 (2019)

    Article  Google Scholar 

  131. S. Mühlbauer, B. Binz, F. Jonietz, Ch. Pfleiderer, A. Rosch, A. Neubauer, R Georgii, P. Böni, Science 323, 915 (2009)

    Google Scholar 

  132. W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, Ch. Pfleiderer, Phys. Rev. B 81, 41203R (2010)

    Article  CAS  Google Scholar 

  133. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura, Nature 465, 901 (2010)

    Article  CAS  Google Scholar 

  134. C. Pappas, E. Lelievre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, B. Farago, Phys. Rev. Lett. 102, 197202 (2009)

    Article  CAS  Google Scholar 

  135. S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Science 336, 198–201 (2012)

    Article  CAS  Google Scholar 

  136. A.N. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994)

    Article  CAS  Google Scholar 

  137. A.N. Bogdanov, D.A. Yablonskii, Sov. Phys. JETP 68, 101 (1989)

    Google Scholar 

  138. A.N. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 195, 182–192 (1999)

    Article  CAS  Google Scholar 

  139. V. Laliena, J. Campo, Phys. Rev. B 96, 1420 (2017)

    Article  Google Scholar 

  140. T. Nakajima, H. Oike, A. Kikkawa, E.P. Gilbert, N. Booth, K. Kakurai, Y. Taguchi, Y. Tokura, F. Kagawa, T.H. Arima, Sci. Adv. 3, e1602562 (2017)

    Article  CAS  Google Scholar 

  141. T. Nakajima, Y. Inamura, T. Ito, K. Ohishi, H. Oike, F. Kagawa, A. Kikkawa, Y. Taguchi, K. Kakurai, Y. Tokura, T.-H. Arima, Phys. Rev. B 98, 014424 (2018)

    Article  CAS  Google Scholar 

  142. J. Campo, J. Luzon, F. Palacio, G. McIntyre, A. Millan, A. Wildes, Phys. Rev. B 78(5), 054415 (2008)

    Article  CAS  Google Scholar 

  143. R. Caciuffo, G. Amoretti, A. Murani, R. Sessoli, A. Caneschi, D. Gatteschi, Phys. Rev. Lett. 81(21), 4744–4747 (1998)

    Article  CAS  Google Scholar 

  144. I. Mirebeau, M. Hennion, H. Casalta, H. Andres, H. U. Güdel, A.V. Irodova, A. Caneschi, Phys. Rev. Lett. 83, 628 (1999)

    Article  CAS  Google Scholar 

  145. E.M. Chudnovsky, D.A. Garanin, Phys. Rev. Lett. 87(18), 187203 (2001)

    Article  CAS  Google Scholar 

  146. C. Carbonera, F. Luis, J. Campo, J. Sánchez-Marcos, A. Camón, J. Chaboy, D. Ruiz-Molina, I. Imaz, J. van Slageren, S. Dengler, M. González, Phys. Rev. B 81(1), 014427 (2010)

    Article  CAS  Google Scholar 

  147. M. Bée, Principles and Applications in Solid State Chemistry, Biology and Materials Science (IOP Publishing, Bristol, 2020)

    Google Scholar 

  148. J. Alberto Rodríguez-Velamazán, Miguel A. González, José A. Real, Miguel Castro, M. Carmen Muñoz, Ana B. Gaspar, R. Ohtani, M. Ohba, K. Yoneda, Y. Hijikata, N. Yanai, M. Mizuno, H. Ando, S. Kitagawa, J. Am. Chem. Soc. 134(11), 5083–5089 (2012)

    Google Scholar 

  149. F. Mezei, Z. Phys. A: Hadrons Nucl. 255(2), 146–160 (1972)

    CAS  Google Scholar 

  150. F. Mezei, The principles of neutron spin echo, in Neutron Spin Echo. Lecture Notes in Physics, ed. by F. Mezei, vol. 128 (Springer, Berlin, 1980)

    Google Scholar 

  151. F. Mezei, C. Pappas, T. Gutberlet, Neutron Spin Echo Spectroscopy: Basics, Trends and Applications. Lecture Notes in Physics (Springer, Berlin, 2002)

    Google Scholar 

  152. K. Weron, J. Phys. Condens. Matter 3(46), 9151–9162 (1991)

    Article  Google Scholar 

  153. R.M. Pickup, R. Cywinski, C. Pappas, B. Farago, P. Fouquet, Phys. Rev. Lett. 102(9), 97202 (2009)

    Article  CAS  Google Scholar 

  154. G.P. Felcher, R.O. Hilleke, R.K. Crawford, J. Haumann, R. Kleb, G. Ostrowski, Rev. Sci. Instrum. 58(4), 609–619 (1987)

    Article  CAS  Google Scholar 

  155. D.L. Price, F. Fernandez-Alonso, Neutron Scattering: Magnetic and Quantum Phenomena. Experimental Methods in the Physical Sciences (Academic Press, London, 2015)

    Google Scholar 

  156. H. Zabel, Mater. Today 9(1–2), 42–49 (2006)

    Article  CAS  Google Scholar 

  157. V. Lauter-Pasyuk, H.J. Lauter, B.P. Toperverg, L. Romashev, V. Ustinov, Phys. Rev. Lett. 89(16), 309 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Much of the work reported here was carried out during funding by the Spanish Ministry of Science and Innovation grant PGC-2018-099024-B-I00 or its equivalents before. JC is grateful for the hospitality received at the different neutron sources and in particular to the Institut Laue-Langevin and the Laboratoire Leon Brillouin. We are indebted to many discussions with our colleagues and co-workers, but in particular with Fernando Palacio, Javier Luzón, Garry McIntyre, José Alberto Rodríguez-Velamazán, Ángel Millán, Oscar Fabelo, Laura Cañadillas, Juan Rodríguez-Carvajal, Katsuya Inoue, Yusuke Kousaka, Yuko Hosokoshi, Kazuki Ohishi, Jun Kishine, Yoshiiko Togawa, Cristina Sáenz de Pipaón, Clara González, Clara Rodríguez, Miguel Pardo-Sáenz, Milagros Tomás, and Larry Falvello.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Campo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campo, J., Laliena, V. (2021). Neutron Scattering in Magnetism: Fundamentals and Examples. In: Franco, V., Dodrill, B. (eds) Magnetic Measurement Techniques for Materials Characterization. Springer, Cham. https://doi.org/10.1007/978-3-030-70443-8_14

Download citation

Publish with us

Policies and ethics