Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1346))

Abstract

In this paper, we use graphics processing units (GPU) to accelerate sparse and arbitrary structured neural networks. Sparse networks have nodes in the network that are not fully connected with nodes in preceding and following layers, and arbitrary structure neural networks have different number of nodes in each layers. Sparse Neural networks with arbitrary structures are generally created in the processes like neural network pruning and evolutionary machine learning strategies. We show that we can gain significant speedup for full activation of such neural networks using graphical processing units. We do a prepossessing step to determine dependency groups for all the nodes in a network, and use that information to guide the progression of activation in the neural network. Then we compute activation for each nodes in its own separate thread in the GPU, which allows for massive parallelization. We use CUDA framework to implement our approach and compare the results of sequential and GPU implementations. Our results show that the activation of sparse neural networks lends very well to GPU acceleration and can help speed up machine learning strategies which generate such networks or other processes that have similar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  2. R. Hecht-Nielsen, Theory of the backpropagation neural network, in Neural Networks for Perception (Elsevier, Amsterdam, 1992), pp. 65–93

    Book  Google Scholar 

  3. K. Fatahalian, J. Sugerman, P. Hanrahan, Understanding the efficiency of GPU algorithms for matrix-matrix multiplication, in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (ACM, New York, 2004), pp. 133–137

    Book  Google Scholar 

  4. Y. LeCun, J.S. Denker, S.A. Solla, Optimal brain damage, in Advances in Neural Information Processing Systems (Morgan Kaufmann, San Francisco, 1990), pp. 598–605

    Google Scholar 

  5. B. Hassibi, D.G. Stork, Second order derivatives for network pruning: optimal brain surgeon, in Advances in Neural Information Processing Systems (Kaufmann , San Mateo, 1993), pp. 164–171

    Google Scholar 

  6. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evolut. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  7. K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  8. D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: from architectures to learning. Evolut. Intell. 1(1), 47–62 (2008)

    Article  Google Scholar 

  9. R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., Evolving deep neural networks (2017). Preprint. arXiv:1703.00548

    Google Scholar 

  10. F. Ino, J. Gomita, Y. Kawasaki, K. Hagihara, A gpgpu approach for accelerating 2-d/3-d rigid registration of medical images, in International Symposium on Parallel and Distributed Processing and Applications (Springer, New York, 2006), pp. 939–950

    Google Scholar 

  11. D. Kirk et al., NVIDIA CUDA software and GPU parallel computing architecture, in ISMM, vol. 7 (2007), pp. 103–104

    Google Scholar 

  12. J.E. Stone, D. Gohara, G. Shi, OpenCL: a parallel programming standard for heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

    Article  Google Scholar 

  13. D. Strigl, K. Kofler, S. Podlipnig, Performance and scalability of GPU-based convolutional neural networks, in 2010 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) (IEEE, New York, 2010), pp. 317–324

    Google Scholar 

  14. C. Nvidia, Cublas Library, vol. 15(27) (NVIDIA Corporation, Santa Clara, CA, 2008), p. 31

    Google Scholar 

  15. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., Tensorflow: a system for large-scale machine learning, in OSDI, vol. 16 (2016), pp. 265–283

    Google Scholar 

  16. D. Göddeke, GPGPU-basic math tutorial. Univ. Dortmund, Fachbereich Mathematik, 2005

    Google Scholar 

  17. NVIDIA, GPU-accelerated libraries for computing (2018) [Online]. Available: https://developer.nvidia.com/gpu-accelerated-libraries

  18. D. Steinkraus, I. Buck, P. Simard, Using GPUs for machine learning algorithms,” in Proceedings of Eighth International Conference on Document Analysis and Recognition, 2005 (IEEE, New York, 2005), pp. 1115–1120

    Google Scholar 

  19. I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, vol. 1 (MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  20. Z. Luo, H. Liu, X. Wu, Artificial neural network computation on graphic process unit, in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. IJCNN’05, vol. 1 (IEEE, New York, 2005), pp. 622–626

    Google Scholar 

  21. D. Scherer, H. Schulz, S. Behnke, Accelerating large-scale convolutional neural networks with parallel graphics multiprocessors, in International Conference on Artificial Neural Networks (Springer, New York, 2010), pp. 82–91

    Google Scholar 

  22. S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cuDNN: efficient primitives for deep learning (2014). Preprint. arXiv:1410.0759

    Google Scholar 

  23. A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, N. Andrew, Deep learning with COTS HPC systems, in International Conference on Machine Learning (2013), pp. 1337–1345

    Google Scholar 

  24. S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, Y. Chen, Cambricon-X: an accelerator for sparse neural networks, in 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (IEEE, New York, 2016), pp. 1–12

    Google Scholar 

  25. J.M. Nageswaran, N. Dutt, J.L. Krichmar, A. Nicolau, A.V. Veidenbaum, A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neur. Netw. 22(5–6), 791–800 (2009)

    Article  Google Scholar 

  26. C.-F. Juang, T.-C. Chen, W.-Y. Cheng, Speedup of implementing fuzzy neural networks with highdimensional inputs through parallel processing on graphic processing units. IEEE Trans. Fuzzy Syst. 19(4), 717–728 (2011)

    Article  Google Scholar 

  27. X. Chen, Y. Wang, X. Liu, M.J. Gales, P.C. Woodland, Efficient GPU-based training of recurrent neural network language models using spliced sentence bunch, in Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  28. L. Luo, M. Wong, W.-M. Hwu, An effective GPU implementation of breadth-first search, in Proceedings of the 47th Design Automation Conference (ACM, New York, 2010), pp. 52–55

    Google Scholar 

  29. P. Harish, P. Narayanan, Accelerating large graph algorithms on the GPU using CUDA, in International Conference on High-Performance Computing (Springer, New York, 2007), pp. 197–208

    Google Scholar 

Download references

Acknowledgements

This material is based in part upon work supported by the National Science Foundation under grant number IIA-1301726. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick C. Harris Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gajurel, A., Louis, S.J., Wu, R., Barford, L., Harris, F.C. (2021). GPU Acceleration of Sparse Neural Networks. In: Latifi, S. (eds) ITNG 2021 18th International Conference on Information Technology-New Generations. Advances in Intelligent Systems and Computing, vol 1346. Springer, Cham. https://doi.org/10.1007/978-3-030-70416-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70416-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70415-5

  • Online ISBN: 978-3-030-70416-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics