Skip to main content

Simulation of Phase Transformation and Residual Stress of Low Alloy Steel in Laser Beam Welding

  • Conference paper
  • First Online:
Enhanced Material, Parts Optimization and Process Intensification (EMPOrIA 2020)

Abstract

The inhomogeneous temperature distribution in welding processes leads to high temperature gradients between the weld seam and the base material. A heterogeneous phase transformation takes place between the areas where the austenitic transformation temperature is exceeded and those where it remains below this temperature. This leads to a residual stress state which results in distortion when the yield strength is exceeded. In order to understand the thermal history of a welded specimen and the phase transformation that has taken place, numerical simulation is used.

This work focuses on the temperature field simulation and the resulting phase transformation in laser beam welding. Two heat sources are combined to simulate the weld pool. Typical models from the literature are used to represent the phase transformation. Altogether a model is developed which can be used as a basis for the calculation of residual stress formation due to thermal load and phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mackerle, J.: Finite elemente analysis and simulation of welding: a bibliography (1976–1996). Modelling Simul. Mater. Sci. Eng. 4, 501–533 (1996)

    Article  CAS  Google Scholar 

  2. Mackerle, J.: Finite elemente analysis and simulation of welding: a bibliography (1996–2001). Modelling Simul. Mater. Sci. Eng. 10, 295–318 (2002)

    Article  Google Scholar 

  3. Ueda, Y.: Computational Welding Mechanics. Osaka University, Joining and Welding Research Institute (1999)

    Google Scholar 

  4. Webster, P., Ananthaviravakumar, N., Hughes, D., et al.: Measurement and modelling of residual stresses in a TIG Weld. J. Appl. Phys. A: Mater. Sci. Process. 74(7), 1421–1423 (2002)

    Article  Google Scholar 

  5. Dilthey, U., Reisgen, U., Kretschmer, M.: Comparison of FEM simulations to measurements of residual stresses for the example of a welded plate: a state-of-the-art report. Modelling Simul. Mater. Sci. Eng. 8, 911–926 (2000)

    Article  Google Scholar 

  6. Radaj, D.: Fachbuchreihe Schweißtechnik. Bd. 143: Eigenspannungen und Verzug beim Schweißen: Rechen- und Messverfahren. Düsseldorf: Verl. für Schweißen und verwandte Verfahren (2002)

    Google Scholar 

  7. Wohlfahrt, H.: Schweißeigenspannungen. In: Härterei-technische Mitteilungen. Band 31 Heft 1/2, 56–71 (1976)

    Google Scholar 

  8. Dilthey, U.: Schweißtechnische Fertigungsverfahren. Bd. 2: Verhalten der Werkstoffe beim Schweißen. 2. Aufl., Düsseldorf: DVS-Verlag (1995)

    Google Scholar 

  9. Peiter, A. (Hrsg): Handbuch Spannungsmesspraxis. Experimentelle Ermittlung mechanischer Spannungen. Braunschweig: Vieweg&Sohn Verlagsgesellschaft (1992)

    Google Scholar 

  10. Radaj, D.: Fachbuchreihe Schweißtechnik. Bd. 141: Schweißprozeßsimulation: Grundlagen und Anwendungen. Düsseldorf: Verl. für Schweißen und verwandte Verfahren (1999)

    Google Scholar 

  11. Goldak, J., Chakravarit, A., Bibby, M.: A new finite element model for welding heat source. Metallurgical Trans. B 15B, 299–305 (1984)

    Article  Google Scholar 

  12. Goldak, J.A., Akhlaghi, M.: Computational Welding Mechanics. Springer Science, New-York (2005)

    Google Scholar 

  13. Avrami, M.: Kinetics of phase change, 1: general theory. J. Chem. Phys. 7, 103–112 (1939)

    Article  Google Scholar 

  14. Avrami, M.: Kinetics of phase change, 2: transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940)

    Article  CAS  Google Scholar 

  15. Avrami, M.: Kinetics of phase change, 3: granulation, phase change and microstructure. J. Chem. Phys. 9, 177–184 (1941)

    Article  CAS  Google Scholar 

  16. Johnson, W.A., Mehl, R.F.: Reaction kinetics in process of nucleation and growth. Trans. Am. Inst. Min. Metall. Eng. 135, 416–458 (1939)

    Google Scholar 

  17. Kolmogorov, A.N.: Statistical theory of crystallization of metals. Izv. Akad. Nauk SSSR, Ser. Mat. Bull. 1, 355–359 (1937). (in Russian)

    Google Scholar 

  18. Koistinen, D.P., Marburger, R.E.: A general equation prescribing extend of austenite-martensite transformation in pure FE-C alloys and plain carbon steels. Acta Metall. 7, 59–60 (1959)

    Article  Google Scholar 

  19. Caballero, F.G., Capdevilla, C., Andres, C.G.: Modelling of kinetics of austenite formation in steels with different initial microstructures. ISIJ Int. 41(10), 1093–1102 (2001)

    Article  CAS  Google Scholar 

  20. Datta, D P., Gokhale, A.M.: Austenitization kinetics of pearlite and ferrite aggregates in a low carbon steel containing 0.15 wt pct C. In: Metallurgical Transactions A, vol. 12, pp. 443–450 (1981)

    Google Scholar 

Download references

Acknowledgement

The presented investigations were carried out at RWTH Aachen University Welding and Joining Institute ISF within the framework of the Collaborative Research Centre SFB1120–236616214 “Bauteilpräzision durch Beherrschung von Schmelze und Erstarrung in Produktionsprozessen” and funded by the Deutsche Forschungsgemeinschaft e.V. (DFG, German Research Foundation). The sponsorship and support is gratefully acknowledged.

Simulations were performed with computing resources granted by RWTH Aachen University under project rwth0436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Akyel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akyel, F., Reisgen, U., Olschok, S., Murthy, K. (2021). Simulation of Phase Transformation and Residual Stress of Low Alloy Steel in Laser Beam Welding. In: Reisgen, U., Drummer, D., Marschall, H. (eds) Enhanced Material, Parts Optimization and Process Intensification. EMPOrIA 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-70332-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70332-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70331-8

  • Online ISBN: 978-3-030-70332-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics