Skip to main content

White Blood Cell Classification Using Genetic Algorithm–Enhanced Deep Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Applied Cognitive Computing

Abstract

The amount of white blood cells in the blood is of great importance for disease diagnosis. White blood cells include five main classes (eosinophils, lymphocytes, monocytes, neutrophils, basophils), each of which is an important indicator for specific diseases. Deep learning models have been developed to successfully classify the different white blood cell types. The most prominent deep learning models in image classification are deep convolutional neural network (D-CNN) models. A key challenge when solving a problem using deep learning is identifying and setting the hyperparameters for the algorithm. Mostly, these hyperparameters are set manually based on experience. In this study, a new model of deep convolutional neural network is proposed for the classification of four white blood cells types. In this model, the hyperparameters are self-optimized by a genetic algorithm which provides significant improvement in the model. For the verification of the proposed model, four types of white blood cells available from the Kaggle data series were studied. The number of white blood cell images are about 12,000 and are split for training and test sets as 80% and 20%, respectively. When the proposed model was applied to the Kaggle white blood cell data set, the four white blood cell types in the sample data set were classified with high accuracy. The genetic algorithm (GA)–enhanced D-CNN model produced above 93% classification accuracy for the test set demonstrating the success of the proposed enhancement to the D-CNN model with GA. Comparatively, D-CNN models without GA optimization, such as Inception V3 model, produced 84% accuracy, and ResNet-50 model achieved 88% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Akselrod-Ballin, L. Karlinsky, Alpert, et al., A region based convolutional network for tumor detection and classification in breast mammography, in Deep Learning and Data Labeling for Medical Applications, (Springer, Cham, 2016), pp. 197–205

    Chapter  Google Scholar 

  2. Y. Bar, I. Diamant, L. Wolf, et al., Chest pathology detection using deep learning with non-medical training. In 2015 IEEE 12th Int. Symp. Biomedical Imaging, pp. 294–97, 2015, Apr.

    Google Scholar 

  3. J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  4. T. Bhat, S. Teli, J. Rijal, et al., Neutrophil to lymphocyte ratio and cardiovascular diseases: a review. Expert. Rev. Cardiovasc. Ther. 11(1), 55–59 (2013)

    Article  Google Scholar 

  5. C. Briggs, Quality counts: new parameters in blood cell counting. Int. J. Lab. Hematol. 31(3), 277–297 (2009)

    Article  Google Scholar 

  6. J.A. Conchello, J.W. Lichtman, Optical sectioning microscopy. Nat. Methods 2(12), 920–931 (2005) https://doi.org/10.1038/nmeth815/

    Article  Google Scholar 

  7. G.E. Dahl, D. Yu, L. Deng, A. Acero, Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2011)

    Article  Google Scholar 

  8. L. Dean, Blood Groups and Red Cell Antigens, Chapter 1. Bethesda, MD. https://www.ncbi.nlm.nih.gov/books/NBK2261/ (2005)

  9. Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Int.l Conf. on Machine Learning, pp. 1050–1059 (2016, June)

    Google Scholar 

  10. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks. Proc. 13th Int’l Conf. Artificial Intelligence and Statistics, pp. 249–256 (2010, March)

    Google Scholar 

  11. B. Graham, Kaggle Diabetic Retinopathy Detection Competition Report (University of Warwick press, Coventry, UK, 2015)

    Google Scholar 

  12. M. Habibzadeh, A. Krzyżak, T. Fevens, White blood cell differential counts using convolutional neural networks for low resolution images. In Int. Conf. Artificial Intelligence and Soft Computing, pp. 263–274. Springer, Berlin, Heidelberg (2013, June)

    Google Scholar 

  13. M.A. Hall, Correlation-based feature selection for machine learning. PhD Thesis, University Waikato, Hamilton (1999)

    Google Scholar 

  14. S. Hamidian, B. Sahiner, N. Petrick, A. Pezeshk, 3D convolutional neural network for automatic detection of lung nodules in chest CT. In Medical Imaging 2017: Computer-Aided Diagnosis, Vol. 10134, p. 1013409. Int.l Society for Optics and Photonics (2017)

    Google Scholar 

  15. K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imageNet classification. Proc. IEEE Int.l Conf. Comp. Vision, pp. 1026–1034 (2015)

    Google Scholar 

  16. B.D. Horne, J.L. Anderson, J.M. John, et al., Which white blood cell subtypes predict increased cardiovascular risk? J. Am. Coll. Cardiol. 45(10), 1638–1643 (2005)

    Article  Google Scholar 

  17. V. Iglovikov, S. Mushinskiy, V. Osin, Satellite imagery feature detection using deep convolutional neural network: a Kaggle competition. arXiv preprint arXiv:1706.06169 (2017)

    Google Scholar 

  18. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

    Google Scholar 

  19. N.S. Jaddi, S. Abdullah, A.R. Hamdan, A solution representation of genetic algorithm for neural network weights and structure. Inf. Process. Lett. 116(1), 22–25 (2016)

    Article  Google Scholar 

  20. V. Jain, S. Patnaik, F. P. Vlădicescu, I. K. Sethi (eds.), Recent Trends in Intelligent Computing, Communication and Devices (Springer Nature (Singapore/multi-national) Springer, 2018)

    Google Scholar 

  21. M.D. Joshi, A.H. Karode, S.R. Suralkar, White blood cells segmentation and classification to detect acute leukemia. Int. J. Emerging Trends Tech. Comp. Sci. 2(3), 147–151 (2013)

    Google Scholar 

  22. D. Kansara, S. Sompura, S. Momin, M. D’Silva, Classification of WBC for blood cancer diagnosis using deep convolutional neural networks. Int. J. Res. Advent Technol. 6(12), 3576–3581 (2018)

    Google Scholar 

  23. A.M. Karim, M.S. Güzel, M.R. Tolun, H. Kaya, F.V. Çelebi, A new generalized deep learning framework combining sparse autoencoder and Taguchi method for novel data classification and processing. Math. Probl. Eng. 2018, 1–13 (2018)

    Google Scholar 

  24. A.M. Karim, M.S. Güzel, M.R. Tolun, H. Kaya, F.V. Çelebi, A new framework using deep auto-encoder and energy spectral density for medical waveform data classification and processing. Biocybern. Biomed. Eng. 39(1), 148–159 (2019)

    Article  Google Scholar 

  25. T.S. Kickler, Clinical analyzers. Advances in automated cell counting. Anal. Chem. 71(12), 363–365 (1999)

    Article  Google Scholar 

  26. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

    Google Scholar 

  27. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (1097–05) (2012)

    Google Scholar 

  28. K. Kuan, M. Ravaut, G. Manek, et al., Deep learning for lung cancer detection: tackling the Kaggle data science bowl 2017 challenge. arXiv preprint arXiv:1705.09435 (2017)

    Google Scholar 

  29. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  30. G. Liang, H. Hong, W. Xie, L. Zheng, Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 6, 36188–36197 (2018)

    Article  Google Scholar 

  31. J.S. Loudon, Detecting and Localizing Cell Nuclei in Medical Images. MSc thesis, NTNU (2018)

    Google Scholar 

  32. N. Metawa, M.K. Hassan, M. Elhoseny, Genetic algorithm-based model for optimizing bank lending decisions. Expert Syst. Appl. 80, 75–82 (2017)

    Article  Google Scholar 

  33. Mooney Paul, Identify Blood Cell Subtypes from Images, Kaggle (2018). https://www.kaggle.com/paultimothymooney/identify-blood-cell-subtypes-from-images

  34. S. Newman, T. Persson, White Blood Cell Differential Counting in Blood Smears Via Tiny YOLO (Stanford University Press, Stanford, California, USA, 2018)

    Google Scholar 

  35. S. Ohlsson, Deep Learning: How the Mind Overrides Experience (Cambridge University Press, UK, 2011)

    Book  Google Scholar 

  36. A. Osei-Bimpong, C. Jury, R. McLean, S.M. Lewis, Point-of-care method for total white cell count: an evaluation of the HemoCue WBC device. Int J. Laboratory Hematol. 31(6), 657–664 (2009)

    Article  Google Scholar 

  37. S.K. Pal, P.P. Wang, Genetic Algorithms for Pattern Recognition (CRC Press (USA/multi-national), 2017)

    Book  MATH  Google Scholar 

  38. N.K. Pareek, V. Patidar, Medical image protection using genetic algorithm operations. Soft. Comput. 20(2), 763–772 (2016)

    Article  Google Scholar 

  39. R. Pascanu, T. Mikolov, Y. Bengio, Understanding the exploding gradient problem. CoRR, abs/1211.5063, 2, 1–11 (2012)

    Google Scholar 

  40. O. Russakovsky, J. Deng, Su, et al., ImageNet Large Scale Visual Recognition Challenge. IJCV 2015 http://www.image-net.org/challenges/LSVRC/ (2015)

  41. O. Roeva, S. Fidanova, M. Paprzycki, Population size influence on the genetic and ant algorithms performance in case of cultivation process modeling, in Recent Advances in Computational Optimization, (Springer, Cham, 2015), pp. 107–120

    Google Scholar 

  42. J.D. Seebach, R. Morant, R. Rüegg, et al., The diagnostic value of the neutrophil left shift in predicting inflammatory and infectious disease. Am. J. Clin. Pathol. 107(5), 582–591 (1997)

    Article  Google Scholar 

  43. M. Simon, E. Rodner, J. Denzler, ImageNet pre-trained models with batch normalization. arXiv preprint arXiv:1612.01452 (2016)

    Google Scholar 

  44. C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-resNet and the impact of residual connections on learning. In Thirty-First AAAI Conf. on AI (2017, Feb.)

    Google Scholar 

  45. D. Tigkas, V. Christelis, G. Tsakiris, Comparative study of evolutionary algorithms for the automatic calibration of the Medbasin-D conceptual hydrological model. Environ. Proc. 3(3), 629–644 (2016)

    Article  Google Scholar 

  46. Q. Wu, F. Merchant, K. Castleman, Microscope image processing (Elsevier, 2010)

    Google Scholar 

  47. C. Zhang, P.C. Woodland Parameterised sigmoid and ReLU hidden activation functions for DNN acoustic modelling. 16th Annual Conf. Int.l Speech Communication Assoc. (2015)

    Google Scholar 

  48. K. Zhang, W. Zuo, Y. Chen, et al., Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Zhao, M. Zhang, Z. Zhou, et al., Automatic detection and classification of leukocytes using convolutional neural networks. Med. Biol. Eng. Comput. 55(8), 1287–1301 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

Images of human white blood cells were selected from publicly available databases without any identifying information on any individuals. This work has been supported in part by Ondokuz Mayis University Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Sevinc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sevinc, O., Mehrubeoglu, M., Guzel, M.S., Askerzade, I. (2021). White Blood Cell Classification Using Genetic Algorithm–Enhanced Deep Convolutional Neural Networks. In: Arabnia, H.R., Ferens, K., de la Fuente, D., Kozerenko, E.B., Olivas Varela, J.A., Tinetti, F.G. (eds) Advances in Artificial Intelligence and Applied Cognitive Computing. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-70296-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70296-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70295-3

  • Online ISBN: 978-3-030-70296-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics