Skip to main content

Natural Fibre-Reinforced Polymer Composites: Manufacturing and Biomedical Applications

  • Chapter
  • First Online:
Polymeric and Natural Composites

Abstract

Currently, the use of natural fibres as a reinforcement in composites presents many attractive benefits, including the reduction of materials from non-renewable sources and reduction of environmental impact. Intensive research is being carried out to develop biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramli N, Mazlan N, Ando Y, Leman Z, Abdan K, Aziz AA et al (2018) Natural fiber for green technology in automotive industry: a brief review. IOP Conf Ser Mater Sci Eng [Internet]. 2018 Jun; 368:012012. Available from: https://iopscience.iop.org/article/https://doi.org/10.1088/1757-899X/368/1/012012

  2. Rohan T, Tushar BGTM (2018) Review of natural fiber composites. IOP Conf Ser Mater Sci Eng [Internet]. 2018 Feb; 314:012020. Available from: https://iopscience.iop.org/article/https://doi.org/10.1088/1757-899X/314/1/012020

  3. Rajak DK, Pagar DD, Kumar R, Pruncu CI (2019) Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Mater Res Technol [Internet]. 2019 Nov; 8(6):6354–6374. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2238785419312086

  4. Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B Eng [Internet]. 2019 Oct; 174:106956. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836819310017

  5. Jones D, Ormondroyd GO, Curling SF, Popescu C-M, Popescu M-C (2017) Chemical compositions of natural fibres. In: Advanced high strength natural fibre composites in construction [Internet]. Elsevier, pp 23–58. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081004111000029

  6. Santulli C (2019) Natural fiber-reinforced composites. In: Biomass, biopolymer-based materials, and bioenergy [Internet]. Elsevier, pp 225–238. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081024263000126

  7. Peijs T (2000) Natural fiber based composites. Mater Technol [Internet]. 2000 Jan 25; 15(4):281–285. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.1080/10667857.2000.11752892

  8. Huda MS, Drzal LT, Ray D, Mohanty AK, Mishra M (2008) Natural-fiber composites in the automotive sector. In: Properties and performance of natural-fibre composites [Internet]. Elsevier, pp 221–268. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9781845692674500077

  9. Mishnaevsky L, Branner K, Petersen H, Beauson J, McGugan M, Sørensen B (2017) Materials for wind turbine blades: an overview. Materials (Basel) [Internet]. 2017 Nov 9; 10(11):1285. Available from: http://www.mdpi.com/1996-1944/10/11/1285

  10. Singh Rajeshwar, Gupta M (2005) Natural fiber composites for building applications. In: Natural fibers, biopolymers, and biocomposites [Internet], CRC Press. Available from: http://www.crcnetbase.com/doi/https://doi.org/10.1201/9780203508206.ch8

  11. Pacheco-Torgal F, Jalali S (2011) Cementitious building materials reinforced with vegetable fibres: a review. Constr Build Mater [Internet]. 2011 Feb; 25(2):575–581. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0950061810004095

  12. Galan-Marin C, Rivera-Gomez C, Garcia-Martinez A (2016) Use of natural-fiber bio-composites in construction versus traditional solutions: operational and embodied energy assessment. Materials (Basel) [Internet]. 2016 Jun 13; 9(6):465. Available from: http://www.mdpi.com/1996-1944/9/6/465

  13. Maan AA, Nazir A, Khan MKI, Ahmad T, Zia R, Murid M et al (2018) The therapeutic properties and applications of Aloe vera : a review. J Herb Med [Internet]. 2018 Jun; 12:1–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2210803318300022

  14. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol [Internet]. 2019 Dec 17; 127(6):1612–1626. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jam.14290

  15. Khan BA, Wang J, Warner P, Wang H (2015) Antibacterial properties of hemp hurd powder against E. coli. J Appl Polym Sci [Internet]. 2015 Mar 10; 132(10):n/a-n/a. Available from: http://doi.wiley.com/10.1002/app.41588

    Google Scholar 

  16. Moghaddam AB, Shirvani B, Aroon MA, Nazari T (2018) Physico-chemical properties of hybrid electrospun nanofibers containing polyvinylpyrrolidone (PVP), propolis and aloe vera. Mater Res Express [Internet]. 2018 Sep 26; 5(12):125404. Available from: https://iopscience.iop.org/article/10.1088/2053-1591/aae0bf

  17. Nazarzadeh Zare E, Makvandi P, Tay FR (2019) Recent progress in the industrial and biomedical applications of tragacanth gum: a review. Carbohydr Polym [Internet]. 2019 May; 212:450–467. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861719302188

  18. He W, Benson R (2014) Polymeric biomaterials. In: Handbook of polymer applications in medicine and medical devices [Internet]. Elsevier, pp 55–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323228053000049

  19. Bledzki A (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci [Internet]. 1999 May; 24(2):221–274. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079670098000185

  20. Djafari Petroudy SR (2017) Physical and mechanical properties of natural fibers. In: Advanced high strength natural fibre composites in construction [Internet]. Elsevier, pp 59–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081004111000030

  21. Chaitanya S, Singh I (2016) Novel Aloe Vera fiber reinforced biodegradable composites—development and characterization. J Reinf Plast Compos [Internet]. 2016 Oct 5; 35(19):1411–1423. Available from: http://journals.sagepub.com/doi/10.1177/0731684416652739

  22. Ramezani Kakroodi A, Cheng S, Sain M, Asiri A (2014) Mechanical, thermal, and morphological properties of nanocomposites based on polyvinyl alcohol and cellulose nanofiber from aloe vera rind. J Nanomater [Internet]. 2014; 2014:1–7. Available from: http://www.hindawi.com/journals/jnm/2014/903498/

  23. Keya KN, Kona NA, Koly FA, Maraz KM, Islam MN, Khan RA (2019) Natural fiber reinforced polymer composites: history, types, advantages, and applications. Mater Eng Res [Internet] 1(2):69–87. Available from: https://www.syncsci.com/journal/index.php/MER/article/view/267

  24. Desch HE, Dinwoodie JM (2016) Timber: structure, properties, conversion and use. Macmillan International Higher Education

    Google Scholar 

  25. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ [Internet] 15(1):25–33. Available from: http://link.springer.com/10.1007/s10924-006-0042-3

  26. Komuraiah A, Kumar NS, Prasad BD (2014) Chemical composition of natural fibers and its influence on their mechanical properties. Mech Compos Mater [Internet] 50(3):359–376. Available from: http://link.springer.com/10.1007/s11029-014-9422-2

  27. Cruz J, Fangueiro R (2016) Surface modification of natural fibers: a review. Procedia Eng [Internet] 155: 285–288. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877705816321713

  28. Gunge A, Koppad PG, Nagamadhu M, Kivade SB, Murthy KVS (2019) Study on mechanical properties of alkali treated plain woven banana fabric reinforced biodegradable composites. Compos Commun [Internet] 13:47–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2452213918302377

  29. Tavares TD, Antunes JC, Ferreira F, Felgueiras HP (2020) Biofunctionalization of natural fiber-reinforced biocomposites for biomedical applications. Biomolecules [Internet] 10(1):148. Available from: https://www.mdpi.com/2218-273X/10/1/148

  30. Karthi N, Kumaresan K, Sathish S, Gokulkumar S, Prabhu L, Vigneshkumar N (2020) An overview: natural fiber reinforced hybrid composites, chemical treatments and application areas. Mater Today Proc [Internet] 27: 2828–2834. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785320300511

  31. Rahman MM, Khan MA (2007) Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos Sci Technol [Internet] 67(11–12): 2369–2376. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353807000449

  32. Xue Y, Veazie DR, Glinsey C, Horstemeyer MF, Rowell RM (2007) Environmental effects on the mechanical and thermomechanical properties of aspen fiber–polypropylene composites. Compos Part B Eng [Internet] 38(2):152–158. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836806001119

  33. Bledzki AK, Fink H-P, Specht K (2004) Unidirectional hemp and flax EP- and PP-composites: influence of defined fiber treatments. J Appl Polym Sci [Internet] 93(5):2150–2156. Available from: http://doi.wiley.com/10.1002/app.20712

  34. Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites—effect of load application during mercerization of ramie fibers. Compos Part A Appl Sci Manuf [Internet] 37(12): 2213–2220. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X05004422

  35. Manikandan Nair K, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol [Internet] 61(16):2519–2529. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353801001701

  36. Shibata M, Ozawa K, Teramoto N, Yosomiya R, Takeishi H (2003) Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mater Eng [Internet] 288(1):35–43. Available from: http://doi.wiley.com/10.1002/mame.200290031

  37. Salem TF, Tirkes S, Akar AO, Tayfun U (2020) Enhancement of mechanical, thermal and water uptake performance of TPU/jute fiber green composites via chemical treatments on fiber surface. e-Polymers [Internet] 20(1):133–143. Available from: https://www.degruyter.com/view/journals/epoly/20/1/article-p133.xml

  38. Ahmad R, Hamid R, Osman SA (2019) Physical and chemical modifications of plant fibres for reinforcement in cementitious composites. Adv Civ Eng [Internet] 2019:1–18. Available from: https://www.hindawi.com/journals/ace/2019/5185806/

  39. Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites—a review. J Thermoplast Compos Mater [Internet] 22(2):135–162. Available from: http://journals.sagepub.com/doi/10.1177/0892705708091860

  40. da Tavares FF C, de Almeida MDC, da Silva JAP, Araújo LL, Cardozo NSM, Santana RMC (2020) Thermal treatment of açaí (Euterpe oleracea) fiber for composite reinforcement. Polímeros [Internet] 30(1). Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282020000100408&tlng=en

  41. Sun D (2016) Surface modification of natural fibers using plasma treatment. In: Biodegradable green composites [Internet]. Wiley, Hoboken, NJ, pp 18–39. Available from: http://doi.wiley.com/10.1002/9781118911068.ch2

  42. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol [Internet] 68(2):424–432. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353807002643

  43. Kushwaha PK, Kumar R (2010) Studies on water absorption of bamboo-epoxy composites: effect of silane treatment of mercerized bamboo. J Appl Polym Sci [Internet] 115(3):1846–1852. Available from: http://doi.wiley.com/10.1002/app.31317

  44. Puglia D, Monti M, Santulli C, Sarasini F, De Rosa IM, Kenny JM (2013) Effect of alkali and silane treatments on mechanical and thermal behavior of Phormium tenax fibers. Fibers Polym [Internet] 14(3):423–427. Available from: http://link.springer.com/10.1007/s12221-013-0423-x

  45. Ngo T-D (2020) Introduction to composite materials. In: Composite and nanocomposite materials—from knowledge to industrial applications [Internet]. IntechOpen. Available from: https://www.intechopen.com/books/composite-and-nanocomposite-materials-from-knowledge-to-industrial-applications/introduction-to-composite-materials

  46. Gong Y, Niu P, Wang X, Long S, Yang J (2012) Influence of processing temperatures on fiber dimensions and microstructure of polypropylene/hemp fiber composites. J Reinf Plast Compos [Internet] 31(19):1282–1290. Available from: http://journals.sagepub.com/doi/10.1177/0731684412457887

  47. Sawpan MA, Pickering KL, Fernyhough A (2011) Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos Part A Appl Sci Manuf [Internet] 42(3):310–319. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X1000312X

  48. Ramesh M (2018) Hemp, jute, banana, kenaf, ramie, sisal fibers. In: Handbook of properties of textile and technical fibres [Internet]. Elsevier, pp 301–325. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081012727000092

  49. Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol [Internet] 70(12):1687–1696. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353810002319

  50. Plackett D, Løgstrup Andersen T, Batsberg Pedersen W, Nielsen L (2003) Biodegradable composites based on l-polylactide and jute fibres. Compos Sci Technol [Internet] 63(9):1287–1296. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353803001003

  51. Shih Y-F, Huang C-C (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res [Internet] 18(6):2335–2340. Available from: http://link.springer.com/10.1007/s10965-011-9646-y

  52. Sailesh A, Shanjeevi C, Arputhabalan JJ (2014) Tensile strength of Banana–Bamboo–Glass fiber reinforced natural fiber composites. Appl Mech Mater [Internet] 592–594:1195–1199. Available from: https://www.scientific.net/AMM.592-594.1195

  53. Serizawa S, Inoue K, Iji M (2006) Kenaf-fiber-reinforced poly(lactic acid) used for electronic products. J Appl Polym Sci [Internet] 100(1):618–624. Available from: http://doi.wiley.com/https://doi.org/10.1002/app.23377

  54. Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater [Internet] 76: 87–96. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0950061814012628

  55. Joshi A, Shivakumar Gouda PS, Savanur S, Uppin V, Veereshkumar GB (2019) Influence of Kenaf on mechanical properties of glass epoxy composites. IOP Conf Ser Mater Sci Eng [Internet] 577: 012161. Available from: https://iopscience.iop.org/article/10.1088/1757-899X/577/1/012161

  56. Phiri G, Khoathane M, Sadiku E (2014) Effect of fibre loading on mechanical and thermal properties of sisal and kenaf fibre-reinforced injection moulded composites. J Reinf Plast Compos [Internet] 33(3): 283–293. Available from: http://journals.sagepub.com/doi/10.1177/0731684413511548

  57. Yousif BF, Ku H (2012) Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Mater Des [Internet] 36: 847–853. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261306911001841

  58. Wang G, Chen F (2017) Development of bamboo fiber-based composites. In: Advanced high strength natural fibre composites in construction [Internet]. Elsevier, pp 235–255. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081004111000108

  59. Bansal A, Zoolagud (2002) Bamboo composites: Material of the future. J Bamboo Ratt [Internet] 1(2):119–30. Available from: http://booksandjournals.brillonline.com/content/journals/10.1163/156915902760181595

  60. Goh LD, Zulkornain AS (2019) Influence of bamboo in concrete and beam applications. J Phys Conf Ser [Internet] 1349:012127. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1349/1/012127

  61. Bos HL, Müssig J, van den Oever MJA (2006) Mechanical properties of short-flax-fibre reinforced compounds. Compos Part A Appl Sci Manuf [Internet] 37(10): 1591–1604. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X05003982

  62. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol [Internet] 67(3–4): 462–470. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353806003356

  63. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: an overview. In: Pham D (ed) Cogent Eng [Internet]. 2018 Mar 2; 5(1). Available from: https://www.cogentoa.com/article/10.1080/23311916.2018.1446667

  64. Pereira PHF, Rosa M de F, Cioffi MOH, Benini KCC de C, Milanese AC, Voorwald HJC et al (2015) Vegetal fibers in polymeric composites: a review. Polímeros [Internet] 25(1): 9–22. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282015000100002&lng=en&tlng=en

  65. Mano B, Araújo JR, Spinacé MAS, De Paoli M-A (2010) Polyolefin composites with curaua fibres: effect of the processing conditions on mechanical properties, morphology and fibres dimensions. Compos Sci Technol [Internet] 70(1):29–35. Available from: https://linkinghub.elsevier.com/retrieve/pii/S026635380900311X

  66. Duc A Le, Vergnes B, Budtova T (2011) Polypropylene/natural fibres composites: Analysis of fibre dimensions after compounding and observations of fibre rupture by rheo-optics. Compos Part A Appl Sci Manuf [Internet] 42(11):1727–1737. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X11002338

  67. Moigne N Le, Oever M van den, Budtova T (2011) A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres. Compos Part A Appl Sci Manuf [Internet] 42(10):1542–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X11002181

  68. Yan ZL, Wang H, Lau KT, Pather S, Zhang JC, Lin G et al (2013) Reinforcement of polypropylene with hemp fibres. Compos Part B Eng [Internet] 46: 221–226. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836812005756

  69. George G, Tomlal Jose E, Jayanarayanan K, Nagarajan ER, Skrifvars M, Joseph K (2012) Novel bio-commingled composites based on jute/polypropylene yarns: Effect of chemical treatments on the mechanical properties. Compos Part A Appl Sci Manuf [Internet] 43(1): 219–230. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X11003502

  70. Mahesh D, Kowshigha KR, Raju NV, Aggarwal PK (2020) Characterization of banana fiber-reinforced polypropylene composites. J Indian Acad Wood Sci [Internet] 17(1): 1–8. Available from: http://link.springer.com/10.1007/s13196-019-00244-x

  71. Ibrahim MM, Dufresne A, El-Zawawy WK, Agblevor FA (2010) Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydr Polym [Internet] 81(4): 811–819. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861710002377

  72. Brahmakumar M, Pavithran C, Pillai R (2005) Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Compos Sci Technol [Internet] 65(3–4): 563–569. Available from: https://linkinghub.elsevier.com/retrieve/pii/S026635380400243X

  73. (2005) Effect of chemical treatment on rice husk (RH) reinforced polyethylene (PE) composites. BioResources 5(2):854–869

    Google Scholar 

  74. Ozen E, Kiziltas A, Kiziltas EE, Gardner DJ (2013) Natural fiber blend-nylon 6 composites. Polym Compos [Internet] 34(4): 544–553. Available from: http://doi.wiley.com/10.1002/pc.22463

    Google Scholar 

  75. Pang C, Shanks R, Ing K, Daver F (2013) Plasticised cellulose acetate-natural fibre composite. World J Eng [Internet] 10(5): 405–410. Available from: http://multi-science.atypon.com/doi/10.1260/1708-5284.10.5.405

  76. Pang C, Shanks RA, Daver F (2014) Bio-composites based on cellulose acetate and kenaf fibers: processing and properties, pp 350–353. Available from: http://aip.scitation.org/doi/abs/10.1063/1.4873798

  77. Gutiérrez MC, De Paoli M-A, Felisberti MI (2012) Biocomposites based on cellulose acetate and short curauá fibers: effect of plasticizers and chemical treatments of the fibers. Compos Part A Appl Sci Manuf [Internet] 43(8): 1338–1346. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X12000991

  78. Lima PRL, Santos HM, Camilloto GP, Cruz RS (2017) Effect of surface biopolymeric treatment on sisal fiber properties and fiber-cement bond. J Eng Fiber Fabr [Internet] 12(2):155892501701200. Available from: http://journals.sagepub.com/doi/10.1177/155892501701200207

  79. Singha AS, Rana RK (2012) Natural fiber reinforced polystyrene composites: effect of fiber loading, fiber dimensions and surface modification on mechanical properties. Mater Des [Internet] 41: 289–297. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261306912003019

  80. Mishra S, Naik JB (2005) Effect of treatment of maleic anhydride on mechanical properties of natural fiber: polystyrene composites. Polym Plast Technol Eng [Internet] 44(4): 663–675. Available from: http://www.tandfonline.com/doi/abs/10.1081/PTE-200057814

  81. Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Compos Part B Eng [Internet] 40(7): 628–632. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836809000687

  82. Nayak S, Mohanty JR, Samal PR, Nanda BK (2020) Polyvinyl chloride reinforced with areca sheath fiber composites—an experimental study. J Nat Fibers [Internet] 17(6): 781–792. Available from: https://www.tandfonline.com/doi/full/10.1080/15440478.2018.1534186

  83. Shi SQ, Cai L, Weng Y, Wang D, Sun Y (2019) Comparative life-cycle assessment of water supply pipes made from bamboo vs. polyvinyl chloride. J Clean Prod [Internet] 240: 118172. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0959652619330422

  84. Jiang L, He C, Fu J, Li X (2018) Wear behavior of alkali-treated sorghum straw fiber reinforced polyvinyl chloride composites in corrosive water conditions. BioResources 13(2):3362–3376

    Google Scholar 

  85. Wang L, He C, Yang X (2019) Effects of pretreatment on the soil aging behavior of rice husk fibers/polyvinyl chloride composites. BioResources 14(1):59–69

    Article  Google Scholar 

  86. Neher B, Bhuiyan MMR, Kabir H, Qadir MR, Gafur MA, Ahmed F (2014) Study of mechanical and physical properties of palm fiber reinforced acrylonitrile butadiene styrene composite. Mater Sci Appl [Internet] 05(01): 39–45. Available from: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/msa.2014.51006

  87. Lufti MTM, Majid DL, Faizal ARM, Norkhairunnisa M (2015) Biocomposite from acrylonitrile-butadiene-styrene polymer and Kenaf whole stem fibre: mechanical properties. Adv Mater Res [Internet] 1119: 263–267. Available from: https://www.scientific.net/AMR.1119.263

  88. Liu H, Wu Q, Zhang Q (2009) Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. Bioresour Technol [Internet] 100(23): 6088–6097. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960852409006658

  89. Araujo JR, Mano B, Teixeira GM, Spinacé MAS, De Paoli M-A (2010) Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, interfacial and morphological properties. Compos Sci Technol [Internet] 70(11): 1637–1644. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353810002320

  90. Choudhury A (2008) Isothermal crystallization and mechanical behavior of ionomer treated sisal/HDPE composites. Mater Sci Eng A [Internet] 491(1–2): 492–500. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0921509308002906

  91. Carvalho KCC, Mulinari DR, Voorwald HJC, Cioffi MOH (2010) Chemical modification effect on the mechanical properties of hips/coconut fiber composites. BioResources 5(2):1143–1155

    Google Scholar 

  92. Antich P, Vázquez A, Mondragon I, Bernal C (2006) Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Compos Part A Appl Sci Manuf [Internet] 37(1):139–150. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X04003124

  93. Beninia KCCC, Voorwald HJC, Cioffi MOH (2011) Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Proc Eng [Internet] 10: 3246–3251. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877705811007247

  94. Wong KJ, Zahi S, Low KO, Lim CC (2010) Fracture characterisation of short bamboo fibre reinforced polyester composites. Mater Des [Internet] 31(9):4147–4154. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261306910002402

  95. Sreekumar PA, Albert P, Unnikrishnan G, Joseph K, Thomas S (2008) Mechanical and water sorption studies of ecofriendly banana fiber-reinforced polyester composites fabricated by RTM. J Appl Polym Sci [Internet] 109(3):1547–1555. Available from: http://doi.wiley.com/10.1002/app.28155

  96. Mariatti M, Jannah M, Abu Bakar A, Khalil HPSA (2008) Properties of Banana and Pandanus Woven fabric reinforced unsaturated polyester composites. J Compos Mater [Internet] 42(9): 931–941. Available from: http://journals.sagepub.com/doi/10.1177/0021998308090452

  97. Monteiro SN, Terrones LAH, D’Almeida JRM (2008) Mechanical performance of coir fiber/polyester composites. Polym Test [Internet] 27(5):591–595. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014294180800041X

  98. Mulinari DR, Baptista CARP, Souza JVC, Voorwald HJC (2011) Mechanical properties of coconut fibers reinforced polyester composites. Procedia Eng [Internet] 10: 2074–2079. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877705811005315

  99. Monteiro SN, Aquino RCMP, Lopes FPD (2008) Performance of curaua fibers in pullout tests. J Mater Sci [Internet] 43(2): 489–493. Available from: http://link.springer.com/10.1007/s10853-007-1874-5

  100. Charlet K, Jernot J-P, Gomina M, Bizet L, Bréard J (2010) Mechanical properties of flax fibers and of the derived unidirectional composites. J Compos Mater [Internet] 44(24): 2887–2896. Available from: http://journals.sagepub.com/doi/10.1177/0021998310369579

  101. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf [Internet] 42(9):1189–1196. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X11001382

  102. Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol [Internet] 66(7–8): 895–906. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353805003234

  103. Sever K, Sarikanat M, Seki Y, Erkan G, Erdoğan ÜH, Erden S (2012) Surface treatments of jute fabric: The influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Ind Crops Prod [Internet] 35(1): 22–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926669011001877

  104. Akil HM, Cheng LW, Mohd Ishak ZA, Abu Bakar A, Abd Rahman MA (2009) Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Compos Sci Technol [Internet] 69(11–12):1942–1948. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353809001638

  105. Devi LU, Bhagawan SS, Thomas S (2011) Dynamic mechanical properties of pineapple leaf fiber polyester composites. Polym Compos [Internet] 32(11):1741–1750. Available from: http://doi.wiley.com/10.1002/pc.21197

  106. Idicula M, Boudenne A, Umadevi L, Ibos L, Candau Y, Thomas S (2006) Thermophysical properties of natural fibre reinforced polyester composites. Compos Sci Technol [Internet] 66(15):2719–2725. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353806001084

  107. Sreekumar PA, Saiah R, Saiter JM, Leblanc N, Joseph K, Unnikrishnan G et al (2009) Dynamic mechanical properties of sisal fiber reinforced polyester composites fabricated by resin transfer molding. Polym Compos [Internet] 30(6):768–775. Available from: http://doi.wiley.com/10.1002/pc.20611

    Google Scholar 

  108. Sreekumar PA, Thomas SP, Saiter J marc, Joseph K, Unnikrishnan G, Thomas S (2009) Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos Part A Appl Sci Manuf [Internet] 40(11):1777–1784. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X0900253X

  109. Merlini C, Soldi V, Barra GMO (2011) Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polym Test [Internet] 30(8):833–840. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142941811001401

  110. Mothé C, de Araújo C (2000) Properties of polyurethane elastomers and composites by thermal analysis. Thermochim Acta [Internet] 357–358:321–325. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040603100004032

  111. Bakare IO, Okieimen FE, Pavithran C, Abdul Khalil HPS, Brahmakumar M (2010) Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des [Internet] 31(9):4274–4280. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261306910002244

  112. Milanese AC, Cioffi MOH, Voorwald HJC (2011) Mechanical behavior of natural fiber composites. Procedia Eng [Internet] 10:2022–2027. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877705811005236

  113. Mothé CG, de Araujo CR (2004) Caracterização térmica e mecânica de compósitos de poliuretano com fibras de Curauá. Polímeros [Internet] 14(4):274–278. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282004000400014&lng=pt&tlng=pt

  114. Sapuan SM, Leenie A, Harimi M, Beng YK (2006) Mechanical properties of woven banana fibre reinforced epoxy composites. Mater Des [Internet] 27(8):689–693. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261306905000257

  115. Irawan AP, Sukania IW (2015) Tensile strength of Banana fiber reinforced epoxy composites materials. Appl Mech Mater [Internet] 776: 260–263. Available from: https://www.scientific.net/AMM.776.260

  116. Venkateshwaran N, ElayaPerumal A, Alavudeen A, Thiruchitrambalam M (2011) Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater Des [Internet] 32(7):4017–4021. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261306911001579

  117. Biswas S, Kindo S, Patnaik A (2011) Effect of fiber length on mechanical behavior of coir fiber reinforced epoxy composites. Fibers Polym [Internet] 12(1):73–78. Available from: http://link.springer.com/10.1007/s12221-011-0073-9

  118. Gohil PP, Shaikh AA (2011) Cotton-epoxy composites: development and mechanical characterization. Key Eng Mater [Internet] 471–472:291–296. Available from: https://www.scientific.net/KEM.471-472.291

  119. Gning PB, Liang S, Guillaumat L, Pui WJ (2011) Influence of process and test parameters on the mechanical properties of flax/epoxy composites using response surface methodology. J Mater Sci [Internet] 46(21): 6801–6811. Available from: http://link.springer.com/10.1007/s10853-011-5639-9

  120. Buksnowitz C, Adusumalli R, Pahler A, Sixta H, Gindl W (2010) Acoustical properties of Lyocell, hemp, and flax composites. J Reinf Plast Compos [Internet] 29(20): 3149–3154. Available from: http://journals.sagepub.com/doi/10.1177/0731684410367533

  121. Karaduman Y, Onal L (2011) Water absorption behavior of carpet waste jute-reinforced polymer composites. J Compos Mater [Internet] 45(15):1559–71. Available from: http://journals.sagepub.com/doi/10.1177/0021998310385021

  122. MIR A, Zitoune R, Collombet F, Bezzazi B (2010) Study of mechanical and thermomechanical properties of jute/epoxy composite laminate. J Reinf Plast Compos [Internet] 29(11):1669–1680. Available from: http://journals.sagepub.com/doi/10.1177/0731684409341672

  123. Lopattananon N, Payae Y, Seadan M (2008) Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites. J Appl Polym Sci [Internet] 110(1):433–443. Available from: http://doi.wiley.com/10.1002/app.28496

  124. Mohan TP, Kanny K (2011) Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Compos Part A Appl Sci Manuf [Internet] 42(4):385–393. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X1000326X

  125. Abera Betelie A, Nicholas Sinclair A, Kortschot M, Li Y, Tilahun Redda D (2019) Mechanical properties of sisal-epoxy composites as functions of fiber-to-epoxy ratio. AIMS Mater Sci [Internet] 6(6):985–996. Available from: http://www.aimspress.com/article/10.3934/matersci.2019.6.985

  126. Francklin HM, Motta LAC, Cunha J, Santos AC, Landim MV (2019) Study of epoxy composites and sisal fibers as reinforcement of reinforced concrete structure. Rev IBRACON Estruturas e Mater [Internet] 12(2): 255–287. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000200255&tlng=en

  127. Di Landro L, Janszen G (2014) Composites with hemp reinforcement and bio-based epoxy matrix. Compos Part B Eng [Internet] 67:220–226. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836814003011

  128. Joseph S, Thomas S (2008) Electrical properties of banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci [Internet] 109(1):256–263. Available from: http://doi.wiley.com/10.1002/app.27452

  129. Joseph S, Sreekala MS, Thomas S (2008) Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci [Internet] 110(4): 2305–2314. Available from: http://doi.wiley.com/10.1002/app.27648

  130. de Medeiros ES, Agnelli JAM, Joseph K, de Carvalho LH, Mattoso LHC (2005) Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics. Polym Compos [Internet] 26(1):1–11. Available from: http://doi.wiley.com/10.1002/pc.20063

  131. Kalia S, Kaith BS, Sharma S, Bhardwaj B (2008) Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites. Fibers Polym [Internet] 9(4):416–422. Available from: http://link.springer.com/10.1007/s12221-008-0067-4

  132. Peng X, Zhong L, Ren J, Sun R (2010) Laccase and alkali treatments of cellulose fibre: Surface lignin and its influences on fibre surface properties and interfacial behaviour of sisal fibre/phenolic resin composites. Compos Part A Appl Sci Manuf [Internet] 41(12):1848–1856. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359835X10002526

  133. Bhandari NL, Dhungana BR, Lach R, Henning S, Adhikari R (2019) Synthesis and characterization of urea–formaldehyde eco-friendly composite based on natural fibers. J Inst Sci Technol [Internet] 24(1):19–25. Available from: https://www.nepjol.info/index.php/JIST/article/view/24623

  134. Zhong JB, Lv J, Wei C (2007) Mechanical properties of sisal fibre reinforced urea-formaldehyde resin composites. Express Polym Lett [Internet] 1(10):681–687. Available from: http://www.expresspolymlett.com/letolt.php?file=EPL-0000363&mi=c

  135. Milawarni, Yassir (2019) Properties of composite boards from coconut coir, plastic waste and urea formaldehyde adhesives. IOP Conf Ser Mater Sci Eng [Internet] 536:012110. Available from: https://iopscience.iop.org/article/10.1088/1757-899X/536/1/012110

  136. Sun E, Liao G, Zhang Q, Qu P, Wu G, Xu Y et al (2018) Green preparation of straw fiber reinforced hydrolyzed soy protein isolate/urea/formaldehyde composites for biocomposite flower pots application. Materials (Basel) [Internet] 11(9):1695. Available from: http://www.mdpi.com/1996-1944/11/9/1695

  137. Yang M, Wang F, Zhou S, Lu Z, Ran S, Li L et al (2019) Thermal and mechanical performance of unidirectional composites from bamboo fibers with varying volume fractions. Polym Compos [Internet] 40(10):3929–37. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.25253

  138. Song Y, Gandhi U, Koziel A, Vallury S, Yang A (2018) Effect of the initial fiber alignment on the mechanical properties for GMT composite materials. J Thermoplast Compos Mater [Internet] 31(1): 91–109. Available from: http://journals.sagepub.com/doi/10.1177/0892705716681400

  139. Ratna Prasad AV, Mohana Rao K (2011) Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater Des [Internet] 32(8–9): 4658–4663. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0261306911001713

  140. Chaudhary V, Bajpai PK, Maheshwari S (2018) Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. J Nat Fibers [Internet] 15(1):80–97. Available from: https://www.tandfonline.com/doi/full/10.1080/15440478.2017.1320260

  141. Shrivastava A (2018) Plastics processing. In: Introduction to plastics engineering [Internet]. Elsevier, pp 143–177. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323395007000058

  142. Abdurohman K, Satrio T, Muzayadah NL, Teten (2018) A comparison process between hand lay-up, vacuum infusion and vacuum bagging method toward e-glass EW 185/lycal composites. J Phys Conf Ser [Internet] 1130: 012018. Available from: https://iopscience.iop.org/article/10.1088/1742-6596/1130/1/012018

  143. Swift KG, Booker JD (2013) Plastics and composites processing. In: Manufacturing process selection handbook [Internet]. Elsevier, pp 141–174. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780080993607000057

  144. Misri S, Ishak MR, Sapuan SM, Leman Z (2015) Filament winding process for Kenaf fibre reinforced polymer composites. In: Manufacturing of natural fibre reinforced polymer composites [Internet]. Springer International Publishing, Cham, pp 369–383. Available from: http://link.springer.com/10.1007/978-3-319-07944-8_18

  145. (2001) Filament Winding. In: Composites [Internet]. ASM International, pp 536–549. Available from: https://dl.asminternational.org/books/book/60/chapter/704683/filament-winding

  146. Ansari SM, Ghazali CMR, Othman NS (2019) The effect of winding speed on the mechanical properties of Kenaf fiber reinforced geopolymer composites via filament winding technique

    Google Scholar 

  147. Jamaludin MIH, Jamian S, Awang MK, Kamarudin KA, Nor MKM, Ismail AE (2020) Characterization of continuous gradient functionally graded natural fiber reinforced polymer composites. IOP Conf Ser Mater Sci Eng [Internet] 824:012019. Available from: https://iopscience.iop.org/article/10.1088/1757-899X/824/1/012019

  148. Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CAN (2015) Pultrusion Process of Natural Fibre-Reinforced Polymer Composites. In: Manufacturing of Natural Fibre Reinforced Polymer Composites [Internet]. Springer International Publishing, Cham, pp 217–231. Available from: http://link.springer.com/10.1007/978-3-319-07944-8_11

  149. Chang BP, Chan WH, Zamri MH, Md Akil H, Chuah HG (2019) Investigating the effects of operational factors on wear properties of heat-Treated Pultruded Kenaf fiber-reinforced polyester composites using Taguchi method. J Nat Fibers [Internet] 16(5):702–717. Available from: https://www.tandfonline.com/doi/full/10.1080/15440478.2018.1432001

  150. Fairuz AM, Sapuan SM, Zainudin ES, Jaafar CAN (2016) Effect of filler loading on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites. J Mech Eng Sci [Internet] 10(1):1931–1942. Available from: http://jmes.ump.edu.my/images/VOLUME 10 Issue 1 June 2016/16_Fairuz et al.pdf

  151. Fahad Halim AFM (2019) Fabrication of unidirectional coir fiber reinforced nonwoven melt-blown glass fabric composite by compression molding. J Text Sci Fash Technol [Internet] 4(2). Available from: https://irispublishers.com/jtsft/fulltext/fabrication-of-unidirectional-coir-fiber-reinforced-nonwoven-melt-blown-glass-fabric-composite.ID.000582.php

  152. Khayal O (2019) Advancements in polymer composite structures

    Google Scholar 

  153. Krishnamurthy (2019) N2 KVM&. Studies on mechanical properties of hybrid composites using jute and e-glass by hand layup and vacuum bagging technique. Glob J Eng Sci Res 135–140

    Google Scholar 

  154. Fajrin J (2016) Mechanical properties of natural fiber composite made of Indonesian grown sisal. Jurn[1] J Fajrin, Mech Prop Nat Fiber Compos Made Indones Grown Sisal, J Info Tek 17 69–84.al Info Tek. 2016 Jun 1; 17: 69–84

    Google Scholar 

  155. Sanjay MR, Arpitha GR, Senthamaraikannan P, Kathiresan M, Saibalaji MA, Yogesha B (2019) The hybrid effect of Jute/Kenaf/E-Glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. J Nat Fibers [Internet] 16(4):600–612. Available from: https://www.tandfonline.com/doi/full/10.1080/15440478.2018.1431828

  156. Bosquetti M, da Silva AL, Azevedo EC, Berti LF (2019) Analysis of the mechanical strength of polymeric composites reinforced with sisal fibers. J Nat Fibers [Internet] 1–6. Available from: https://www.tandfonline.com/doi/full/10.1080/15440478.2019.1612310

  157. Sarifuddin N, Ahmad Z, Yusuff MI (2019) Mechanical properties of woven carbon Fiber/Kenaf Fabric reinforced epoxy matrix hybrid composites. Malaysian J Microsc 2(15):10–16

    Google Scholar 

  158. Aisyah HA, Paridah MT, Sapuan SM, Khalina A, Berkalp OB, Lee SH et al (2019) Thermal properties of Woven Kenaf/Carbon fibre-reinforced epoxy hybrid composite panels. Int J Polym Sci [Internet] 2019:1–8. Available from: https://www.hindawi.com/journals/ijps/2019/5258621/

  159. Mbakop RS, Lebrun G, Brouillette F (2019) Effect of compaction parameters on preform permeability and mechanical properties of unidirectional flax fiber composites. Compos Part B Eng [Internet] 176: 107083. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359836818344445

  160. Gallos A, Paës G, Allais F, Beaugrand J (2017) Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Adv [Internet] 7(55):34638–34654. Available from: http://xlink.rsc.org/?DOI=C7RA05240E

  161. Torres FG, Ochoa B, Machicao E (2003) Single screw extrusion of natural fibre reinforced thermoplastics (NFRTP). Int Polym Process [Internet] 18(1):33–40. Available from: http://www.hanser-elibrary.com/doi/abs/10.3139/217.1727

  162. Munde YS, Ingle RB, Siva I (2019) Effect of sisal fiber loading on mechanical, morphological and thermal properties of extruded polypropylene composites. Mater Res Express [Internet] 6(8):085307. Available from: https://iopscience.iop.org/article/10.1088/2053-1591/ab1dd1

  163. Miyahara RY, Melquiades FL, Ligowski E, Santos A do, Fávaro SL, Antunes Junior O dos R (2018) Preparation and characterization of composites from plastic waste and sugar cane fiber. Polímeros [Internet] 28(2):147–154. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282018000200147&lng=en&tlng=en

  164. Teixeira RS, Santos SF, Christoforo AL, Payá J, Savastano H, Lahr FAR (2019) Impact of content and length of curauá fibers on mechanical behavior of extruded cementitious composites: analysis of variance. Cem Concr Compos [Internet] 102: 134–144. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0958946518308308

  165. Wang X (2013) Overview on biocompatibilities of implantable biomaterials. In: Advances in biomaterials science and biomedical applications [Internet]. InTech. Available from: http://www.intechopen.com/books/advances-in-biomaterials-science-and-biomedical-applications/overview-on-biocompatibilities-of-implantable-biomaterials

  166. Love B (2017) Polymeric biomaterials. In: Biomaterials [Internet]. Elsevier, pp 205–238. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128094785000092

  167. Jiao M, Zhang P, Meng J, Li Y, Liu C, Luo X et al (2018) Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomater Sci [Internet] 6(4):726–45. Available from: http://xlink.rsc.org/?DOI=C7BM01020F

  168. Dahman Y (2019) Biomaterials science and technology [Internet]. Taylor & Francis, Boca Raton, CRC Press. Available from: https://www.taylorfrancis.com/books/9780429878350

  169. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol [Internet] 61(9):1189–1224. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0266353800002414

  170. Kuhn LT (2012) Biomaterials. In: Introduction to biomedical engineering [Internet]. Elsevier, pp 219–271. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123749796000058

  171. Loureiro dos Santos LA (2017) Natural polymeric biomaterials: processing and properties ☆. In: Reference module in materials science and materials engineering [Internet], Elsevier. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128035818022530

  172. Tang X, Thankappan SK, Lee P, Fard SE, Harmon MD, Tran K et al (2014) Polymeric biomaterials in tissue engineering and regenerative medicine. In: Natural and synthetic biomedical polymers [Internet]. Elsevier, pp 351–371. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123969835000223

  173. Rodrigues LC, Silva SS, Reis RL (2019) Acemannan-based films: an improved approach envisioning biomedical applications. Mater Res Express [Internet] 6(9):095406. Available from: https://iopscience.iop.org/article/10.1088/2053-1591/ab2f66

  174. Atmakuri A, Palevicius A, Griskevicius P, Janusas G (2019) Investigation of mechanical properties of hemp and flax fibers hybrid composites for biomedical applications. Mechanics [Internet] 25(2). Available from: http://mechanika.ktu.lt/index.php/Mech/article/view/22712

  175. Furlan DM, Morgado DL, Oliveira AJA de, Faceto ÂD, Moraes DA de, Varanda LC et al (2019) Sisal cellulose and magnetite nanoparticles: formation and properties of magnetic hybrid films. J Mater Res Technol [Internet] 8(2):2170–2179. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2238785418308998

  176. García-Tejero IF, Durán Zuazo VH, Sánchez-Carnenero C, Hernández A, Ferreiro-Vera C, Casano S (2019) Seeking suitable agronomical practices for industrial hemp (Cannabis sativa L.) cultivation for biomedical applications. Ind Crops Prod [Internet] 139:111524. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926669019305369

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. D. Nugent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de M. de Lima, T.A., de Lima, G.G., Nugent, M.J.D. (2022). Natural Fibre-Reinforced Polymer Composites: Manufacturing and Biomedical Applications. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Polymeric and Natural Composites. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-70266-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70266-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70265-6

  • Online ISBN: 978-3-030-70266-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics