Skip to main content

Natural Polymer-Based Composite Wound Dressings

  • Chapter
  • First Online:
Polymeric and Natural Composites

Part of the book series: Advances in Material Research and Technology ((AMRT))

Abstract

Wound repair is a complicated and firmly synchronized physiological process, entailing the activation of various cell types throughout each succeeding step (homeostasis, inflammation, proliferation, and tissue remodeling). Any impairment within the correct sequence of the healing events could prompt incessant injuries, with probable denouement on the patients’ quality of life, and consequential failures on wound care management. Contemporary wound healing treatments like gauzes and bandages primarily are pivoted on passively cushioning the wound and do not proffer properties that escalate the rate of wound healing. Even though these strategies are resilient at safeguarding any infection after application, they are futile at healing a heretofore infected wound or spurring tissue regeneration. The burgeoning of next-generation wound healing treatments aid in enhancing patient care pathways and clinical outcomes. Natural polymers play a significant role in wound care. They deliver a versatile and tunable platform to design the germane extracellular matrix competent to succor tissue regeneration, while contrasting the onset of adverse events. Our goal is to scrutinize the evolution of natural polymers in wound dressing from traditional to modern-day treatment methods. The chief characteristics and properties of a natural polymer, which is widely utilized as biomaterial, are presented. Properties of composite material with peculiar heed on their applications in the skin tissue repair field are discussed. Finally, the unmet needs and developmental perspectives of the new generations of environmentally friendly, naturally derived, smart wound dressings are addressed in light of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naik S (2018) Wound, heal thyself. Nature Med 24(9):1311–1312

    Article  Google Scholar 

  2. Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Central Sci 3(3):163–175

    Article  Google Scholar 

  3. Shah JB (2011) The history of wound care. J Amer College Certified Wound Specialists 3(3):65–66

    Article  Google Scholar 

  4. Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O (2019) Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review. Int J Biolog Macromolecules 1(138):854–865

    Article  Google Scholar 

  5. Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharmaceutics 463(2):127–136

    Article  Google Scholar 

  6. Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5(1):32–41

    Article  Google Scholar 

  7. Evans ND, Oreffo RO, Healy E, Thurner PJ, Man YH (2013) Epithelial mechanobiology, skin wound healing, and the stem cell niche. J Mech Behav Biomed Mater 1(28):397–409

    Article  Google Scholar 

  8. De Jong LA (1995) Pre-tension and anisotropy in skin: modelling and experiments. Master of Science Thesis, Eindhoven University of Technology. Available on institution repository at (http://alexandria.tue.nl/repository/books/633250.pdf.1995)

  9. Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagarde JM, Gall Y, Berson M (2000) In vivo model of the mechanical properties of the human skin under suction. Skin Res Technol 6(4):214–221

    Article  Google Scholar 

  10. Atkinson JA, McKenna KT, Barnett AG, McGrath DJ, Rudd M (2005) A randomized, controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation in surgical incisions that traverse Langer’s skin tension lines. Plastic Reconstruct Surgery 116(6):1648–1656

    Article  Google Scholar 

  11. Gurtner GC, Dauskardt RH, Wong VW, Bhatt KA, Wu K, Vial IN, Padois K, Korman JM, Longaker MT (2011) Improving cutaneous scar formation by controlling the mechanical environment: large animal and phase I studies. Annals Surgery 254(2):217–225

    Article  Google Scholar 

  12. Sarrazy V, Billet F, Micallef L, Coulomb B, Desmoulière A (2011) Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regener 19:s10–5

    Article  Google Scholar 

  13. Webb K, Hitchcock RW, Smeal RM, Li W, Gray SD, Tresco PA (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39(6):1136–1144

    Article  Google Scholar 

  14. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. The FASEB J 21(12):3250–3261

    Article  Google Scholar 

  15. Vowden K, Vowden P (2017) Wound dressings: principles and practice. Surgery (Oxford) 35(9):489–494

    Article  Google Scholar 

  16. Weller CD, Team V, Sussman G (2020) First-line interactive wound dressing update: a comprehensive review of the evidence. Front Pharmacol 28(11):155

    Article  Google Scholar 

  17. Weir D (2020) Wound dressings. In: Local wound care for dermatologists, Springer, Cham, pp 25–34

    Google Scholar 

  18. Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, Liu Y, Shao Y, Wang J (2020) Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol 8

    Google Scholar 

  19. Stern D, Cui H (2019) Crafting polymeric and peptidic hydrogels for improved wound healing. Adv Healthcare Mater 8(9):1900104

    Article  Google Scholar 

  20. Suarato G, Bertorelli R, Athanassiou A (2018) Borrowing from nature: biopolymers and biocomposites as smart wound care materials. Front Bioeng Biotechnol 2(6):137

    Article  Google Scholar 

  21. Das A, Abas M, Biswas N, Banerjee P, Ghosh N, Rawat A, Khanna S, Roy S, Sen CK (2019) A modified collagen dressing induces transition of inflammatory to reparative phenotype of wound macrophages. Sci Reports 9(1):1

    Google Scholar 

  22. Ding C, Yang Q, Tian M, Guo C, Deng F, Dang Y, Zhang M (2020) Novel collagen‐based hydrogels with injectable, self‐healing, wound‐healing properties via a dynamic crosslinking interaction. Polym Int

    Google Scholar 

  23. Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A (2020) Nanoparticle-based wound dressing: recent progress in the detection and therapy of bacterial infections. Bioconjugate Chem 31(7):1708–1723

    Article  Google Scholar 

  24. Alvarez GS, Hélary C, Mebert AM, Wang X, Coradin T, Desimone MF (2014) Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. J Mater Chem B 2(29):4660–4670

    Article  Google Scholar 

  25. Ghorbani M, Nezhad-Mokhtari P, Ramazani S (2020) Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing. Int J Biolog Macromolecules

    Google Scholar 

  26. Zare-Gachi M, Daemi H, Mohammadi J, Baei P, Bazgir F, Hosseini-Salekdeh S, Baharvand H (2020) Improving anti-hemolytic, antibacterial and wound healing properties of alginate fibrous wound dressings by exchanging counter-cation for infected full-thickness skin wounds. Mater Sci Eng C 1(107):110321

    Article  Google Scholar 

  27. Singh B, Varshney L, Francis S (2017) Designing sterile biocompatible moxifloxacin loaded trgacanth-PVA-alginate wound dressing by radiation crosslinking method. Wound Med 1(17):11–17

    Article  Google Scholar 

  28. Li H, Yang J, Hu X, Liang J, Fan Y, Zhang X (2011) Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing. J Biomed Mater Res, Part A 98(1):31–39

    Article  Google Scholar 

  29. Abdel-Mohsen AM, Abdel-Rahman RM, Kubena I, Kobera L, Spotz Z, Zboncak M, Prikryl R, Brus J, Jancar J (2020) Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. part I: preparation and characterization. Carbohydrate Polym 230:115708

    Google Scholar 

  30. Lehtovaara BC, Gu FX (2011) Pharmacological, structural, and drug delivery properties and applications of 1, 3-β-glucans. J Agri Food Chem 59(13):6813–6828

    Article  Google Scholar 

  31. Hosary RE, El-Mancy SM, El Deeb KS, Eid HH, Tantawy ME, Shams MM, Samir R, Assar NH, Sleem AA (2020) Efficient wound healing composite hydrogel using Egyptian Avena sativa L. polysaccharide containing β-glucan. Int J Biolog Macromolecules 149:1331–1338

    Google Scholar 

  32. Gharibi R, Kazemi S, Yeganeh H, Tafakori V (2019) Utilizing dextran to improve hemocompatibility of antimicrobial wound dressings with embedded quaternary ammonium salts. Int J Biolog Macromolecules 15(131):1044–1056

    Article  Google Scholar 

  33. Mansuroğlu B, Kızılbey K, ŞayanPoyraz F, Yurttaş Z, Fuerkaiti SN, Abaoğlu İY, Başat HN (2020) Chitosan/dextran sulphate sodium hydrogels for wound healing material: preparation, characterisation and in vitro evaluation. Mater Technol 4:1–8

    Google Scholar 

  34. Turner PR, Murray E, McAdam CJ, McConnell MA, Cabral JD (2020) Peptide chitosan/dextran core/shell vascularized 3D constructs for wound healing. ACS Appl Mater Interfaces 12(29):32328–32339

    Article  Google Scholar 

  35. Savitskaya IS, Shokatayeva DH, Kistaubayeva AS, Ignatova LV, Digel IE (2019) Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells. Heliyon 5(10):e02592

    Google Scholar 

  36. Fürsatz M, Skog M, Sivlér P, Palm E, Aronsson C, Skallberg A, Greczynski G, Khalaf H, Bengtsson T, Aili D (2018) Functionalization of bacterial cellulose wound dressings with the antimicrobial peptide ε-poly-L-Lysine. Biomed Mater 13(2):025014

    Article  Google Scholar 

  37. Pinho E, Soares G (2018) Functionalization of cotton cellulose for improved wound healing. J Mater Chem B 6(13):1887–1898

    Article  Google Scholar 

  38. Ali Khan Z, Jamil S, Akhtar A, Mustehsan Bashir M, Yar M (2020) Chitosan based hybrid materials used for wound healing applications-a short review. Int J Polym Mater Polym Biomater 69(7):419–436

    Article  Google Scholar 

  39. Li Q, Lu F, Zhou G, Yu K, Lu B, Xiao Y, Dai F, Wu D, Lan G (2017) Silver inlaid with gold nanoparticle/chitosan wound dressing enhances antibacterial activity and porosity, and promotes wound healing. Biomacromol 18(11):3766–3775

    Article  Google Scholar 

  40. Liang D, Lu Z, Yang H, Gao J, Chen R (2016) Novel asymmetric wettableAgNPs/chitosan wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 8(6):3958–3968

    Article  Google Scholar 

  41. Adeli H, Khorasani MT, Parvazinia M (2019) Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int J Biol Macromolecules 1(122):238–254

    Article  Google Scholar 

  42. Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A (2019) A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C 1(104):109873

    Article  Google Scholar 

  43. El-Aassar MR, Ibrahim OM, Fouda MM, El-Beheri NG, Agwa MM (2020) Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydrate Polym 15(238):116175

    Article  Google Scholar 

  44. Zhang S, Hou J, Yuan Q, Xin P, Cheng H, Gu Z, Wu J (2020) Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing. Chem Eng J 15(392):123775

    Article  Google Scholar 

  45. Duan Y, Li K, Wang H, Wu T, Zhao Y, Li H, Tang H, Yang W (2020) Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydrate Polym 19:

    Article  Google Scholar 

  46. Duan Y, Li K, Wang H, Wu T, Zhao Y, Li H, Tang H, Yang W (2020) Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydrate Polym 19:116195

    Article  Google Scholar 

  47. Graça MF, Miguel SP, Cabral CS, Correia IJ (2020) Hyaluronic acid-based wound dressings: a review. Carbohydrate Polym 27:116364

    Article  Google Scholar 

  48. Eskandarinia A, Kefayat A, Agheb M, Rafienia M, Baghbadorani MA, Navid S, Ebrahimpour K, Khodabakhshi D, Ghahremani F (2020) A novel bilayer wound dressing composed of a dense polyurethane/propolis membrane and a biodegradable polycaprolactone/gelatin nanofibrous scaffold. Sci Report 10(1):1–5

    Article  Google Scholar 

  49. Hubner P, Donati N, de MenezesQuines LK, Tessaro IC, Marcilio NR (2020) Gelatin-based films containing clinoptilolite-Ag for application as wound dressing. Mater Sci Eng C 1(107):110215

    Article  Google Scholar 

  50. ForoutanKoudehi M, Zibaseresht R (2020) Synthesis of molecularly imprinted polymer nanoparticles containing gentamicin drug as wound dressing based polyvinyl alcohol/gelatin nanofiber. Mater Technol 35(1):21–30

    Article  Google Scholar 

  51. Batzer AT, Marsh C, Kirsner RS (2016) The use of keratin-based wound products on refractory wounds. Int Wound J 13(1):110–115

    Article  Google Scholar 

  52. Sadeghi S, Nourmohammadi J, Ghaee A, Soleimani N (2020) Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. Int J Biol Macromolecules 15(147):1239–1247

    Article  Google Scholar 

  53. Navarro J, Clohessy RM, Holder RC, Gabard AR, Herendeen GJ, Christy RJ, Burnett LR, Fisher JP (2020) In Vivo evaluation of three-dimensional printed, keratin-based hydrogels in a porcine thermal burn model. Tissue Eng Part A 26(5–6):265–278

    Article  Google Scholar 

  54. Patil PP, Reagan MR, Bohara RA (2020) Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int J Biol Macromolecules

    Google Scholar 

  55. Nourmohammadi J, Hadidi M, Nazarpak MH, Mansouri M, Hasannasab M (2020) Physicochemical and antibacterial characterization of nanofibrous wound dressing from silk fibroin-polyvinyl alcohol-elaeagnusangustifolia extract. Fibers Polym 21(3):456–464

    Article  Google Scholar 

  56. Zhang Y, Lu L, Chen Y, Wang J, Chen Y, Mao C, Yang M (2019) Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomater Sci 7(12):5232–5237

    Article  Google Scholar 

  57. Hashimoto T, Kojima K, Tamada Y (2020) Gene expression advances skin reconstruction and wound repair better on silk fibroin-based materials than on collagen-based materials. Materialia 1(9):100519

    Article  Google Scholar 

  58. Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, Jahanshahi M, Hasanpour S, Pagan E, Dolatshahi-Pirouz A, Zhang YS, Kundu SC, Akbari M (2020) Hyaluronic Acid (HA)-Based Silk Fibroin/Zinc Oxide core-shell electrospun dressing for burn wound management. Macromolecular Biosci 20(4):1900328

    Article  Google Scholar 

  59. Feng Y, Li X, Zhang Q, Yan S, Guo Y, Li M, You R (2019) Mechanically robust and flexible silk protein/polysaccharide composite sponges for wound dressing. Carbohydrate Polym 15(216):17–24

    Article  Google Scholar 

  60. Bakhsheshi-Rad HR, Hadisi Z, Ismail AF, Aziz M, Akbari M, Berto F, Chen XB (2020) In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym Test 1(82):106298

    Article  Google Scholar 

  61. Ehterami A, Salehi M, Farzamfar S, Samadian H, Vaez A, Sahrapeyma H, Ghorbani S (2020) A promising wound dressing based on alginate hydrogels containing vitamin D3 cross-linked by calcium carbonate/d-glucono-δ-lactone. Biomed Eng Lett 19:1–1

    Google Scholar 

  62. Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H, Alam M, Ai A, Derakhshankhah H, Allahyari Z, Goodarzi A (2020) Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep 10

    Google Scholar 

  63. Das A, Uppaluri R, Das C (2019) Feasibility of poly-vinyl alcohol/starch/glycerol/citric acid composite films for wound dressing applications. Int J Biol Macromolecules 15(131):998–1007

    Article  Google Scholar 

  64. Zhao X, Wang L, Gao J, Chen X, Wang K (2020) Hyaluronic acid/lysozyme self-assembled coacervate to promote cutaneous wound healing. Biomater Sci 8(6):1702–1710

    Article  Google Scholar 

  65. Konop M, Czuwara J, Kłodzińska E, Laskowska AK, Sulejczak D, Damps T, Zielenkiewicz U, Brzozowska I, Sureda A, Kowalkowski T, Schwartz RA (2020) Evaluation of keratin biomaterial containing silver nanoparticles as a potential wound dressing in full-thickness skin wound model in diabetic mice. J Tissue Eng Regener Med 14(2):334–346

    Article  Google Scholar 

  66. Homaeigohar S, Tsai TY, Zarie ES, Elbahri M, Young TH, Boccaccini AR (2020) Bovine serum albumin (BSA)/polyacrylonitrile (PAN) biohybridnanofibers coated with a biomineralized calcium deficient hydroxyapatite (HA) shell for wound dressing. Mater Sci Eng: C. 111248

    Google Scholar 

  67. Akrami M, Tayebi L, Ghorbani M (2020) Curcumin-loaded naturally-based nanofibers as active wound dressing mats: morphology, drug release, cell proliferation and cell adhesion studies. New J Chem

    Google Scholar 

  68. Peng J, Zhao H, Tu C, Xu Z, Ye L, Zhao L, Gu Z, Zhao D, Zhang J, Feng Z (2020) In situ hydrogel dressing loaded with heparin and basic fibroblast growth factor for accelerating wound healing in rat. Mater Sci Eng C 6:111169

    Article  Google Scholar 

  69. Hodel KV, Fonseca LM, Santos IM, Cerqueira JC, Santos-Júnior RE, Nunes SB, Barbosa JD, Machado BA (2020) Evaluation of different methods for cultivating gluconacetobacterhansenii for bacterial cellulose and montmorillonitebiocomposite production: wound-dressing applications. Polymers 12(2):267

    Article  Google Scholar 

  70. Zhu F, Wang C, Yang S, Wang Q, Liang F, Liu C, Qiu D, Qu X, Hu Z, Yang Z (2017) Injectable tissue adhesive composite hydrogel with fibroblasts for treating skin defects. J Mater Chem B 5(13):2416–2424

    Article  Google Scholar 

  71. Raja IS, Fathima NN (2018) Gelatin–cerium oxide nanocomposite for enhanced excisional wound healing. ACS Appl Bio Mater 1(2):487–495

    Article  Google Scholar 

  72. Yadav C, Chhajed M, Choudhury P, Sahu RP, Patel A, Chawla S, Goswami L, Goswami C, Li X, Agrawal AK, Saini A (2020) Bio-extract amalgamated sodium alginate-cellulose nanofibres based 3D-sponges with interpenetrating BioPU coating as potential wound care scaffolds. Mater Sci Eng C 11:111348

    Google Scholar 

  73. Bergonzi C, d’Ayala GG, Elviri L, Laurienzo P, Bandiera A, Catanzano O (2020) Alginate/human elastin-like polypeptide composite films with antioxidant properties for potential wound healing application. Int J Biol Macromolecules

    Google Scholar 

  74. Păunica-Panea G, Ficai A, Marin MM, Marin Ș, Albu MG, Constantin VD, Dinu-Pîrvu C, Vuluga Z, Corobea MC, Ghica MV (2016) New collagen-dextran-zinc oxide composites for wound dressing. J Nanomater 1

    Google Scholar 

  75. Kossyvaki D, Suarato G, Summa M, Gennari A, Francini N, Gounaki I, Venieri D, Tirelli N, Bertorelli R, Athanassiou A, Papadopoulou EL (2020) Keratin–cinnamon essential oil biocomposite fibrous patches for skin burn care. Mater Adv

    Google Scholar 

  76. Huang Y, Dan N, Dan W, Zhao W (2019) Reinforcement of polycaprolactone/chitosan with nanoclay and controlled release of curcumin for wound dressing. ACS Omega 4(27):22292–22301

    Article  Google Scholar 

  77. Ahn S, Chantre CO, Gannon AR, Lind JU, Campbell PH, Grevesse T, O’Connor BB, Parker KK (2018) Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv Healthcare Mater 7(9):1701175

    Article  Google Scholar 

  78. Kocaaga B, Kurkcuoglu O, Tatlier M, Batirel S, Guner FS (2019) Low-methoxyl pectin–zeolite hydrogels controlling drug release promote in vitro wound healing. J Appl Polym Sci 136(24):47640

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to pay gratitude toward the Department of Chemistry and Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Delhi, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Sharma, B., Shekhar, S., Jain, P. (2022). Natural Polymer-Based Composite Wound Dressings. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Polymeric and Natural Composites. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-70266-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70266-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70265-6

  • Online ISBN: 978-3-030-70266-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics