Skip to main content

Degree-Days and Agro-meteorological Indices in CMIP5 RCP8.5 Future Climate—Results for Central and Southeast Europe

  • Chapter
  • First Online:
Environmental Protection and Disaster Risks (EnviroRISK 2020)

Abstract

The present paper is continuation of our recent study and analyzes the potential changes of residential heating and cooling degree-days as well as three stakeholder-relevant indices of agro-meteorological change (growing season length, sum of the active and sum of the effective temperatures) for Central and Southeast Europe over near past (1975–2004), near (2021–2050) and far (2070–2099) future periods. All indicators were calculated from the output data of our simulations with the regional climate model RegCM driven by the ERA-Interim reanalysis for the near past and by the global circulation model HadGEM2-ES under RCP8.5 CMIP5 radiative forcing scenario for the future periods. The validation of the model-based indices against their counterparts, computed from the observational dataset E-OBS, shows that the model reproduces their spatial variability and magnitude generally well. A linear bias correction of the considered indices is also demonstrated. Consistent with the general trend of the mean and extreme temperatures over the region, the study reveals a decrease of the heating degree days and considerable increase of the cooling degree days and the agro-meteorological indices practically over the whole domain in the future. The detected changes are fairly not symmetrical - the relative increase of the cooling degree days is significantly bigger than the decrease of the heating degree-days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, L.V., et al.: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111(D5) (2006). https://doi.org/10.1029/2005jd006290

  2. Bartholy, J., Pongrácz, R.: Comparing tendencies of some temperature related extreme indices on global and regional scales. IDŐJÁRÁS 110, 35–48 (2006)

    Google Scholar 

  3. Buyukalaca, O., Bulut, H., Yılmaz, T.: Analysis of variable-base heating and cooling degree-days for Turkey. Appl. Energy 69, 269–283 (2001)

    Article  Google Scholar 

  4. Chervenkov, H., Slavov, K.: STARDEX and ETCCDI climate indices based on E-OBS and CARPATCLIM; Part two: ClimData in use. In: Nikolov, G., et al. (eds.) NMA 2018. LNCS, vol. 11189, pp. 368–374 (2019). https://doi.org/10.1007/978-3-030-10692-841

  5. Chervenkov, H., Slavov, K.: Historical climate assessment of temperature-based ETCCDI Climate indices derived from CMIP5 simulations. C. R. Acad. Bulg. Sci. 73(6), 784–790 (2020). https://doi.org/10.7546/CRABS.2020.06.05

    Article  Google Scholar 

  6. Chervenkov H., Slavov K.: ETCCDI climate indices for assessment of the recent climate over southeast Europe. In: Dimov, I., Fidanova, S. (eds.) Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence, vol. 902. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55347-0_34

  7. Chervenkov, H. Spiridonov, V.: Bias correcting of selected ETCCDI climate indices for projected future climate. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science, vol. 11958, pp. 292–299 (2020). https://doi.org/10.1007/978-3-030-41032-2_33

  8. Chervenkov, H., Spiridonov, V.: Sensitivity of selected ETCCDI climate indices from the calculation method for projected future climate. In: Dimov, I., Fidanova, S. (eds.) Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence, vol. 902, pp. 413–427. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55347-0_35

  9. Chervenkov, H., Ivanov, V., Gadzev G., Ganev K.: Sensitivity study of different RegCM4.4 model set-ups—recent results from the TVRegCM experiment. Cybern. Inf. Technol. 5(17), 17–26 (2017)

    Google Scholar 

  10. Chervenkov H., Ivanov V., Gadzhev G., Ganev K.: (2020) Assessment of the future climate over Southeast Europe based on CMIP5 ensemble of climate indices - Part one: Concept and methods. In: Gadzhev G., Dobrinkova, N. (eds.) Proceeding of 1st International Conference on Environmental Protection and disaster RISKs - Part One, ISBN978-619-7065-38-1 144-156 (2020). https://doi.org/10.48365/envr-2020.1.13

  11. Chervenkov H., Ivanov V., Gadzhev G., Ganev K.: Assessment of the future climate over Southeast Europe based on CMIP5 ensemble of climate indices - Part two: Results and discussion. In: Gadzhev G., Dobrinkova, N. (eds.) Proceeding of 1st International Conference on Environmental Protection and disaster RISKs - Part One, ISBN978-619-7065-38-1 157-169 (2020). https://doi.org/10.48365/envr-2020.1.14

  12. Cheval, S., Birsan, M.-V., Dumitrescu, A.: Climate variability in the Carpathian Mountains Region over 1961–2010. Global Planet. Change 118, 85–96 (2014). https://doi.org/10.1016/j.gloplacha.2014.04.005

    Article  Google Scholar 

  13. CIBSE: Degree-days: theory and application. Technical Manual 41. Chartered Institution of Building Services Engineers, London, UK (2006). ISBN-10: 1-903287-76-6. http://www.degreedaysforfree.co.uk/pdf/tm41.pdf

  14. Collins, W.J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C.D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., Woodward, S.: Development and evaluation of an Earth-system model–HadGEM2. Geosci. Model Dev. Discuss. 4, 997–1062 (2011). https://doi.org/10.5194/gmdd-4-997-2011

    Article  Google Scholar 

  15. Cornes, R., van der Schrier, G., van den Besselaar, E.J.M., Jones, P.D.: An ensemble version of the E-OBS temperature and precipitation datasets. J. Geophys. Res. Atmos. 123 (2018). https://doi.org/10.1029/2017JD028200

  16. Croitoru, A.-E., Holobaca, I.-H., Lazar, C., Moldovan, F., Imbroane, A.: Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Change 111, 393–410 (2012). https://doi.org/10.1007/s10584-011-0133-6

    Article  Google Scholar 

  17. European Environment Agency: Heating and Cooling Degree Days. https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-2/assessment (2019). Accessed 4 Aug 2020

  18. Gadzhev, G., Georgieva, I., Ganev, K., Ivanov, V., Miloshev, N., Chervenkov, H., Syrakov, D.: Climate applications in a virtual research environment platform. Scalable Comput.: Pract. Exp. 19(2), 107–118 (2018). https://doi.org//10.12694/scpe.v19i2.134

  19. Gadzhev, G., Ivanov, V., Ganev, K., Chervenkov, H.: TVRegCM Numerical Simulations—Preliminary Results. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science, vol. 10665. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73441-5_28

  20. Gadzhev, G., Ivanov, V., Valcheva, R., Ganev, K., Chervenkov, H.: HPC simulations of the present and projected future climate of the Balkan region. In: Dimov, I., Fidanova, S. (eds.) Advances in High Performance Computing. HPC 2019. Studies in Computational Intelligence, vol. 902. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55347-0_20

  21. Giorgi, F., Coppola, E., Solomon, F., Mariotti, L., Sylla, M.B., Bi, X., Elguindi, N., Diro, G.T., Nair, V., Giuliani, G., Turuncoglu, U.U., Cozzini, S., Guttler, I., O’Brien, T.A., Tawfic, A.B., Shalaby, A., Zakey, A.S., Steiner, A.L., Stordal, F., Sloan, L.C., Brankovic, C.: RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim. Res. 52, 7–29 (2012). https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  22. Harding, A.E., Rivington, M., Mineter, M.J., Tett, S.F.B.: Agro-meteorological indices and climate model uncertainty over the UK. Clim. Change 128, 113–126 (2015). https://doi.org/10.1007/s10584-014-1296-8

    Article  Google Scholar 

  23. Harkness, C., Semenov, M.A., Areal, F., Senapati, N., Trnka, M., Balek, J., Bishop, J.: Adverse weather conditions for UK wheat production under climate change. Agric. Forest Meteorol. 282–283, 107862 (2020). https://doi.org/10.1016/j.agrformet.2019.107862

  24. Hatfield, J.L., Prueger, J.H.: Agroecology: implications for plant response to climate change. In: Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E. (eds.) Crop Adaptation to Climate Change, pp. 27–43. Wiley, West Sussex, UK (2011)

    Chapter  Google Scholar 

  25. IPCC: Climate change: synthesis report. In: Core Writing Team, Pachauri, R.K., Meyer, L.A. (eds.) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 151 pp. IPCC, Geneva, Switzerland (2014)

    Google Scholar 

  26. Ivanov, V., Gadzhev, G., Ganev, K., Chervenkov, H.: Sensitivity of the simulated heat risk in southeastern Europe to the RegCM model configuration preliminary results climate. In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science, vol. 11958, pp. 340–347 (2020). https://doi.org/10.1007/978-3-030-41032-2_39

  27. Ivanov, V., Chervenkov, H., Gadzhev, G., Ganev, K.: Degree-days and agro-meteorological indices in projected future climate over southeast Europe. In: Proceedings of the 20th International Multidisciplinary Scientific GeoConference SGEM 2020, Albena, Bulgaria, 16–25 Aug (2021, in press)

    Google Scholar 

  28. Janković, A., Podraščanin, Z., Djurdjevic, V.: Future climate change impacts on residential heating and cooling degree days in Serbia. IDŐJÁRÁS Q. J. Hung. Meteorol. Serv. 123(3), 351–370 (2019)

    Google Scholar 

  29. Kotlarski, S., et al.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 7, 1297–1333 (2014). https://doi.org/10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  30. Linderholm, H.W.: Growing season changes in the last century. Agric. Forest Meteorol. 137, 1–14 (2006). https://doi.org/10.1016/j.agrformet.2006.03.006

    Article  Google Scholar 

  31. Luo, Q.: Temperature thresholds and crop production: a review. Clim. Change 109, 583–598 (2011). https://doi.org/10.1007/s10584-011-0028-6

    Article  Google Scholar 

  32. Maraun, D.: Bias correcting climate change simulations—a critical review. Curr. Clim. Change Rep. 2, 211–220 (2016). https://doi.org/10.1007/s40641-016-0050-x

    Article  Google Scholar 

  33. Moss, R.H., et al.: The next generation of scenarios for climate change research and assessment. Nature 463(7282), 747–756 (2010). https://doi.org/10.1038/nature08823

    Article  CAS  Google Scholar 

  34. Pieczka, I., Pongrácz, R., André, K.S., Kelemen, F.D., Bartholy, J.: Sensitivity analysis of different parameterization schemes using RegCM4.3 for the Carpathian region. Theor. Appl. Climatol. 1–14 (2016). https://doi.org/10.1007/s00704-016-1941-4

  35. Pieczka, I., Bartholy, J., Pongrácz, R., André, K.S.: Validation of RegCM regional and HadGEM global climate models using mean and extreme climatic variables. IDŐJÁRÁS 123(4), 409–433 (2019)

    Article  Google Scholar 

  36. Pongrácz, R., Bartholy, J., Szabo, P., Gelybó, G.: A comparison of the observed trends and simulated changes in extreme climate indices in the Carpathian Basin by the end of this century. Int. J. Global Warm. 1(1/2/3), 336–355 (2009). https://doi.org/10.1504/IJGW.2009.027097

  37. Seemann, J., Chirkov, Y.I., Lomas, J., Primault, B.: Agrometeorology. Springer, New York (1979). https://doi.org/10.1007/978-3-642-67288-0

  38. Sillmann, J., Röckner, E.: Clim. Change 86, 83 (2008). https://doi.org/10.1007/s10584-007-9308-6

    Article  Google Scholar 

  39. Sillmann, J., Kharin, V.V., Zwiers, F.W., Zhang, X., Bronaugh, D.: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 118, 2473–2493 (2013). https://doi.org/10.1002/jgrd.50188

  40. Spinoni, J., Vogt, J., Barbosa, P.: European degree-day climatologies and trends for the period 1951–2011. Int. J. Climatol. 35, 25–36 (2015). https://doi.org/10.1002/joc.3959

    Article  Google Scholar 

  41. Spinoni, J., Vogt, J.V., Barbosa, P., Dosio, A., McCormick, N., Bigano, A., Füssel, H.M.: Changes of heating and cooling degree-days in Europe from 1981 to 2100. Int. J. Climatol. 38, e191–e208 (2018). https://doi.org/10.1002/joc.5362

    Article  Google Scholar 

  42. Taylor, K.E., Stouffer, R.J., Meehl, G.A.: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93, 485–498 (2012). https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  43. van Vuuren, D.P., et al.: The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011). https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  44. Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., et al.: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Change 2, 851–870 (2011). https://doi.org/10.1002/wcc.147

    Article  Google Scholar 

Download references

Acknowledgements

The authors would express their gratitude of the institutions which provides free of charge software and data (ICTP, UKMO, ECA&D, MPI-M). This work has been carried out in the framework of the National Science Program “Environmental Protection and Reduction of Risks of Adverse Events and Natural Disasters”, approved by the Resolution of the Council of Ministers 577/17.08.2018 and supported by the Ministry of Education and Science (MES) of Bulgaria (Agreement D01-322/18.12.2019) and by the Bulgarian National Science Fund (grant DN-14/3/13.12.2017). This work has been accomplished with the financial support by the Grant BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program (2014–2020) and co-financed by the European Union through the European structural and Investment funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hristo Chervenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chervenkov, H., Gadzhev, G., Ivanov, V., Ganev, K. (2021). Degree-Days and Agro-meteorological Indices in CMIP5 RCP8.5 Future Climate—Results for Central and Southeast Europe. In: Dobrinkova, N., Gadzhev, G. (eds) Environmental Protection and Disaster Risks. EnviroRISK 2020. Studies in Systems, Decision and Control, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-70190-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70190-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70189-5

  • Online ISBN: 978-3-030-70190-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics