Skip to main content

Affective Computing and Emotion-Sensing Technology for Emotion Recognition in Mood Disorders

  • Chapter
  • First Online:
Enhanced Telemedicine and e-Health

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 410))

Abstract

Emotions are species-typical patterns and can be a window to describe the human mind in action. Understanding emotion can provide invaluable insights into various mood disorders, including depression, which makes up the leading cause of disability worldwide. While emotions are not directly observable, they can be inferred via multiple components, including action intention, cognitive appraisals, physiological changes, and subjective feelings. Through various emotion-sensing technologies, the Internet of Things (IoT) is further enhancing the way technology can help perceive human emotions. Thus, the advances in such technologies could indeed provide future directions of assessment, diagnosis, and treatment of various mood disorders. With an introduction to the theories of emotion, this chapter will extend the conceptual foundations and approaches of the emotion-sensing technology in IoT, further introducing readers about emotion and attention-related biases in mood disorders. An extensive review of literature in emotion-sensing technology will provide empirical instances to existing technologies, which can help readers understand emotion analysis and extraction methods in detail, especially when used in the mental health domains. Finally, this chapter will provide practical applications, limitations, and future directions for advancing and humanizing affective computing and the IoT, and may help clinicians make informed decisions about the appropriate method for human emotion evaluation and analysis. This work, therefore, aims to enlighten mental health experts, clinicians, interface designers, and research scientists on existing emotion recognition methods and how to incorporate the IoT in emotion-sensing and further improve its methodology by considering various complexities of emotions and their interactions with other cognitive faculties and measurement variables. In short, this chapter discusses the-state-of-progress of emotion-sensing technology in the IoT with an impetus on mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Cohn, Foundations of human computing: facial expression and emotion, in Artifical Intelligence for Human Computing Lecture Notes in Computer Science, pp. 1–16

    Google Scholar 

  2. D. Hockenbur, S. Hockenbur, Discovering Psychology (M. E. W. Publishers, 2010)

    Google Scholar 

  3. M.L. Minsky, The Society of Mind (Simon & Schuster Paperbacks, New York, 2007)

    Google Scholar 

  4. R.W. Picard, Affective Computing: From Laughter to IEEE. IEEE Trans. Affect. Comput. 1(1), 11–17 (2010)

    Article  Google Scholar 

  5. J.A. Russell, A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  6. M. Feidakis, T. Daradoumis, S. Caballe, Emotion measurement in intelligent tutoring systems: what, when and how to measure, in 2011 Third International Conference on Intelligent Networking and Collaborative Systems (2011)

    Google Scholar 

  7. R.L. Mandryk, M.S. Atkins, K.M. Inkpen, A continuous and objective evaluation of emotional experience with interactive play environments, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ‘06 (2006)

    Google Scholar 

  8. M. Feidakis, T. Daradoumis, S. Caballe, Endowing e-learning systems with emotion awareness, in 2011 Third International Conference on Intelligent Networking and Collaborative Systems (2011)

    Google Scholar 

  9. R. Plutchik, H. Kellerman, The Measurement of Emotions (Academic Press, San Diego, 1989)

    Google Scholar 

  10. A. Becker, N. Hagenberg, V. Roessner, W. Woerner, A. Rothenberger, Evaluation of the self-reported SDQ in a clinical setting: do self-reports tell us more than ratings by adult informants? Eur. Child Adolesc. Psychiatry 13(S2) (2004)

    Google Scholar 

  11. M. Isomursu, M. Tähti, S. Väinämö, K. Kuutti, Experimental evaluation of five methods for collecting emotions in field settings with mobile applications. Int. J. Hum. Comput Stud. 65(4), 404–418 (2007)

    Article  Google Scholar 

  12. S. Mahlke, M. Minge, M. Thüring,“Measuring multiple components of emotions in interactive contexts, in CHI ‘06 Extended Abstracts on Human Factors in Computing Systems—CHI EA ‘06 (2006)

    Google Scholar 

  13. A. Liapis, C. Katsanos, D. Sotiropoulos, M. Xenos, N. Karousos, Recognizing Emotions in Human Computer Interaction: Studying Stress Using Skin Conductance (Springer, Cham, Switzerland, 2015), pp. 255–262

    Google Scholar 

  14. A. Camurri, I. Lagerlöf, G. Volpe, Recognizing emotion from dance movement: comparison of spectator recognition and automated techniques. Int. J. Hum. Comput. Stud. 59, 213–225 (2003). https://doi.org/10.1016/S1071-5819(03)00050-8

    Article  Google Scholar 

  15. K.R. Scherer, What are emotions? And how can they be measured? Soc. Sci. Inf. 44, 695–729 (2005). https://doi.org/10.1177/0539018405058216

    Article  Google Scholar 

  16. V.P. Gonçalves, G.T. Giancristofaro, G.P.R. Filho, T. Johnson, V. Carvalho, G. Pessin, V.P. de Almeida Neris, J. Ueyama, Assessing users’ emotion at interaction time: a multimodal approach with multiple sensors. Soft Comput. 21, 5309–5323 (2017). https://doi.org/10.1007/s00500-016-2115-0

  17. Human emotion recognition: review of sensors and methods

    Google Scholar 

  18. Advances in emotion recognition: link to depressive disorder

    Google Scholar 

  19. P. Ekman, W.V. Friesen, Facial Action Coding System: A Technique for the Measurement of Facial Movement (Consulting Psychologists Press, Palo Alto, CA, 1978)

    Google Scholar 

  20. X. Gong et al., Revision of the Chinese facial affective picture system. Chin. J. Mental Health. 250, 40–46 (2011). https://doi.org/10.3969/j.issn.1000-6729

    Article  Google Scholar 

  21. S. Ballano, I. Hupont, E. Cerezo, S. Baldassarri, Recognizing Emotions from Video in a Continuous 2D Space (Springer, Berlin, Heidelberg, 2011). pp. 600–603

    Google Scholar 

  22. S. Polikovsky, Y. Kameda, Y. Ohta, Facial micro-expressions recognition using high speed camera and 3D- gradient descriptor, in Proceedings of the 3rd International Conference on Crime Detection and Prevention, 3 December 2009. IEEE, London, UK (2009), pp. 1–6. https://doi.org/10.1049/ic.2009.0244

  23. M. Shreve, S. Godavarthy, V. Manohar, D. Goldgof, S. Sarkar, Towards macro- and micro-expression spotting in video using strain patterns, in Proceedings of the IEEE Workshop on Applications of Computer Vision, 2009/12; 7–8 December 2009 (IEEE, Snowbird, UT, 2009), pp. 1–6

    Google Scholar 

  24. W.-J. Yan, X. Li, S.-J. Wang, G. Zhao, Y.-J. Liu, Y.-H. Chen et al., CASME II: An improved spontaneous micro- expression database and the baseline evaluation. PLoS ONE 9, e86041 (2014). https://doi.org/10.1371/journal.pone.0086041

    Article  Google Scholar 

  25. C. Zong, M. Chetouani. Hilbert-Huang transform based physiological signals analysis for emotion recognition, in Proceedings of the 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 14–17 December 2009 (Ajman, UAE), pp. 334–339

    Google Scholar 

  26. C.D. Katsis, N. Katertsidis, G. Ganiatsas, D.I. Fotiadis, Toward emotion recognition in car- racing drivers: a biosignal processing approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38, 502–512 (2008). https://doi.org/10.1109/tsmca.2008.918624

  27. S. Wioleta, Using physiological signals for emotion recognition, in Proceedings of the 2013 6th International Conference on Human System Interactions (HSI) (Gdansk, Poland). 6–8 June 2013, pp. 556–561

    Google Scholar 

  28. Voices of fear and anxiety and sadness Siegman et al 1993

    Google Scholar 

  29. C.M. Lee, S.S. Narayanan, Toward detecting emotions in spoken dialogs. IEEE Trans. Speech Audio Process. 13, 293–303 (2005). https://doi.org/10.1109/tsa.2004.838534

    Article  Google Scholar 

  30. D. Ververidis, C. Kotropoulos, Emotional speech recognition: resources, features, and methods. Speech Commun. 48, 1162–1181 (2006). https://doi.org/10.1016/j.specom.2006.04.003

    Article  Google Scholar 

  31. G. Rickheit, H. Strohner, Handbook of Communication Competence (Mouton de Gruyter, Germany, 2008)

    Book  Google Scholar 

  32. D. Gharavian, M. Sheikhan, A. Nazerieh, S. Garoucy, Speech emotion recognition using FCBF feature selection method and GA-optimized fuzzy ARTMAP neural network. Neural Comput. Appl. 21, 2115–2126 (2012). https://doi.org/10.1007/s00521-011-0643-1

    Article  Google Scholar 

  33. J.S. Devi, S. Yarramalle, N.S. Prasad, Speaker emotion recognition based on speech features and classification techniques. Int. J. Image Graph. Signal Process. 6, 61–77 (2014). https://doi.org/10.5815/ijigsp.2014.07.08

    Article  Google Scholar 

  34. L. Zhang et al., Speech emotion recognition based on deep belief network. J. Taiyuan Univ. Technol. 50, 101–107 (2019). https://doi.org/10.16355/j.cnki.isn1007-9432tyut.2019.01.016

    Article  Google Scholar 

  35. J. Tao, T. Tan, Affective Computing: A Review (Springer, Berlin, Heidelberg, 2005)

    Google Scholar 

  36. D. Bernhardt, P. Robinson, Detecting Emotions from Everyday Body Movements [EB/OL] (2007). Available from: https://www.cl.cam.ac.uk/

  37. Y. Liu, D. Liu, Z. Han, Research on emotion extraction method based on motion recognition. Comput. Eng. 41, 300–305 (2015)

    Google Scholar 

  38. J. Shao, W. Wang, Emotion recognition based on three-dimensional texture features of body movement sequences. J. Comput. Appl. 35, 3497–3499 (2018). https://doi.org/10.3969/j.issn.1001-3695.2018.11.071

    Article  Google Scholar 

  39. C.-L. Li, N. Ye, H.-P. Huang, R.-C. Wang, Physiological signal emotion recognition based on recursive quantitative analysis. Comput. Technol. Dev. 28, 94–98 +102 (2018)

    Google Scholar 

  40. C. Jin, G. Chen, Multi-modal physiological signal emotion recognition based on optimized LSTSVM. Appl. Electron. Technol. 44, 112–116 (2018). https://doi.org/10.16157/j.issn.0258-7998.171839

    Article  Google Scholar 

  41. X. Jie, R. Cao, L. Li, Emotion recognition based on the sample entropy of EEG. Bio-Med. Mater. Eng. 24, 1185–1192 (2014). https://doi.org/10.3233/bme-130919

    Article  Google Scholar 

  42. B. Nakisa, M.N. Rastgoo, D. Tjondronegoro, V. Chandran, Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2018). https://doi.org/10.1016/j.eswa.2017.09.062

    Article  Google Scholar 

  43. J. Cai, W. Chen, Z. Yin, Multiple transferable recursive feature elimination technique for emotion recognition based on EEG signals. Symmetry 11, 683 (2019). https://doi.org/10.3390/sym11050683

    Article  Google Scholar 

  44. R. Alazrai, R. Homoud, H. Alwanni, M. Daoud, EEG-based emotion recognition using quadratic time-frequency distribution. Sensors 18, 2739 (2018). https://doi.org/10.3390/s18082739

    Article  Google Scholar 

  45. H. Chao, L. Dong, Y. Liu, B. Lu, Emotion recognition from multiband EEG signals using capsnet. Sensors 19, 2212 (2019). https://doi.org/10.3390/s19092212

    Article  Google Scholar 

  46. Z. Gao, X. Cui, W. Wan, Z. Gu, Recognition of emotional states using multiscale information analysis of high frequency EEG oscillations. Entropy 21, 609 (2019). https://doi.org/10.3390/e21060609

    Article  Google Scholar 

  47. EEG-Event Related Potentials. Accessed on 22 October 2020. Available online: http://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_erp.htm

  48. T. Dissanayake, Y. Rajapaksha, R. Ragel, I. Nawinne, An ensemble learning approach for electrocardiogram sensor based human emotion recognition. Sensors 19, 4495 (2019). https://doi.org/10.3390/s19204495

    Article  Google Scholar 

  49. A. Goshvarpour, A. Abbasi, A. Goshvarpour, An emotion recognition approach based on wavelet transform and second-order difference plot of ECG. J. AI Data Min. 5, 211–221 (2017)

    Google Scholar 

  50. I. Al Khatib, D. Bertozzi, F. Poletti, L. Benini, A. Jantsch., M. Bechara, H. Khalifeh, M. Hajjar, R. Nabiev, S. Jonsson, Transactions on High-Performance Embedded Architectures and Compilers I. Hardware/software architecture for real-time ECG monitoring and analysis leveraging MPSoC technology. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, Germany, 2007), pp. 239–258

    Google Scholar 

  51. J. Cai, G. Liu, M. Hao, The research on emotion recognition from ECG signal, in Proceedings of the 2009 International Conference on Information Technology and Computer Science (Kiev, Ukraine). 25– 26 July 2009, pp. 497–500

    Google Scholar 

  52. M.F. Amri, M.I. Rizqyawan, A. Turnip, ECG signal processing using offline-wavelet transform method based on ECG-IoT device, in Proceedings of the 2016 3rd International Conference on Information Technology, Computer and Electrical Engineering, Semarang, Indonesia. 18–20 October 2016, pp. 25–30

    Google Scholar 

  53. K. Rattanyu, M. Ohkura, M. Mizukawa, Emotion monitoring from physiological signals for service robots in the living space, in Proceedings of the ICCAS 2010; Gyeonggi-do, Korea. 27–30 October 2010; pp. 580–583

    Google Scholar 

  54. R.L. Mandryk, M.S. Atkins, K.M. Inkpen, A continuous and objective evaluation of emotional experience with interactive play environments, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’06), Montréal, QC, Canada. 22–27 April 2006 (ACM Press, New York, USA, 2006), p. 1027

    Google Scholar 

  55. G. Udovičić, J. Derek, M. Russo, M. Sikora, Wearable Emotion Recognition system based on GSR and PPG signals, in Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care, Mountain View, CA, USA. 23 October 2017, pp. 53–59

    Google Scholar 

  56. G. Wu, G. Liu, M. Hao, The analysis of emotion recognition from GSR based on PSO, in Proceedings of the 2010 International Symposium on Intelligence Information Processing and Trusted Computing, Wuhan, China, 28–29 October 2010, pp. 360–363

    Google Scholar 

  57. D. Ayata, Y. Yaslan, M. Kamasak, Emotion recognition via galvanic skin response: comparison of machine learning algorithms and feature extraction methods. Istanbul Univ. J. Electr. Electron. Eng. 17, 3129–3136 (2017)

    Google Scholar 

  58. Neuro-Tools: GSR|Acuity Eyetracking Blog. Accessed on 8 October 2020, Available online https://acuityets.wordpress.com/2016/10/24/series-neuro-tools-gsr/

  59. A.D.S. Sierra, C.S. Ávila, J.G. Casanova, G. Bailador, Advanced Biometric Technologies. IntechOpen; London, UK. Real-Time Stress Detection by Means of Physiological Signals (2011), pp. 23–44

    Google Scholar 

  60. H.G. Wallbott, K.R. Scherer, The Measurement of Emotions (Academic Press, Cambridge, MA, USA, 1989). Assessing emotion by questionnaire, pp. 55–82

    Google Scholar 

  61. Y. Hao et al., Method of microblog emotion recognition based on word fusion features. Comput. Sci. 45, 105–109 (2018). https://doi.org/10.11896/j.issn.1002-137X.2018.11A.018

    Article  Google Scholar 

  62. F.-L. Huang et al., Weibo themed emotion mining based on multi-feature fusion. Chin. J. Comput. 40, 872–888 (2017). https://doi.org/10.11897/SP.J.1016.2017.00872

    Article  Google Scholar 

  63. C. Zhang, T. Qian, D. Ji, A joint model of microblogging emotion recognition and incentive extraction based on neural network. Comput. Appl. 38, 2464–2468 + 2476 (2018). https://doi.org/10.11772/j.issn.1001-9081.2018020481

  64. B. Calabrese, M. Cannataro, Sentiment Analysis and Affective Computing: Methods and Applications (Springer International Publishing, Cham, 2016), pp. 169–178

    Google Scholar 

  65. D.H. Choi, A. Dailey-Hebert, J.S. Estes, N. Sinha, Using virtual reality in college student mental health treatment, in Current and Prospective Applications of Virtual Reality in Higher Education, Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA), USA: IGI Global (2020), pp. 257–273

    Google Scholar 

  66. J. Joshi, R. Goecke, S. Alghowinem, A. Dhall, M. Wagner, J. Epps, G. Parker, M. Breakspear, Multimodal assistive technologies for depression diagnosis and monitoring. J. Multimodal User Interfaces 7(3), 217–228 (2013)

    Article  Google Scholar 

  67. C. Bourke, K. Douglas, R. Porter, Processing of facial emotion expression in major depression: a review. Aust. N. Z. J. Psychiatry 44, 681–696 (2010)

    Article  Google Scholar 

  68. A.J. Watters, L.M. Williams, Negative biases and risk for depression; integrating self-report and emotion task markers. Depress. Anxiety 28(8), 703–718 (2011)

    Article  Google Scholar 

  69. C.R. Sears, K.R. Newman, J.D. Ference, C.L. Thomas, Attention to emotional images in previously depressed individuals: an eye-tracking study. Cognitive Therapy Res. 35(6), 517–528 (2011)

    Article  Google Scholar 

  70. C.G. Kohler, L.J. Hoffman, L.B. Eastman, K. Healey, P. Moberg, Facial emotion perception in depression and bipolar disorder: a quantitative review. Psychiatry Res. 188, 303–309 (2011)

    Article  Google Scholar 

  71. R.C. Gur, R.J. Erwin, R.E. Gur, A.S. Zwil, C. Heimberg, H.C. Kraemer, Facial emotion discrimination: 2. Behavioral findings in depression. Psychiatry Res. 42, 241–251 (1992)

    Article  Google Scholar 

  72. N. Sinha, Slow attentional response and faulty emotion perception may determine depression vulnerability among college students, in Poster presented at 61st Annual meeting of Psychonomic Society or Virtual Psychonomics, 2020 Nov 19–20, p. 176

    Google Scholar 

  73. B. Liu, Sentiment Analysis: Mining Opinions, Sentiments, and Emotions (Cambridge University Press, 2015)

    Google Scholar 

  74. W. Medhat, A. Hassan, H. Korashy, Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)

    Article  Google Scholar 

  75. K. Ravi, V. Ravi, A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl. Based Syst. 89, 14–46 (2015)

    Article  Google Scholar 

  76. X. Liu, X. Liu, J. Sun, N.X. Yu, B. Sun, Q. Li et al., Proactive suicide prevention online (PSPO): machine identification and crisis management for Chinese social media users with suicidal thoughts and behaviors. J. Med. Internet Res. 21, e11705 (2019). https://doi.org/10.2196/11705

    Article  Google Scholar 

  77. M. Al-Mosaiwi, T. Johnstone, In an absolute state: elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psychol. Sci. 7, 636–637 (2019). https://doi.org/10.1177/216770261.9843297

    Article  Google Scholar 

  78. A.G. Reece, C.M. Danforth, Instagram photos reveal predictive markers of depression. EPJ Data Sci. 6, 15 (2017). https://doi.org/10.1140/epjds/s13688-017-0118-4

    Article  Google Scholar 

  79. A. Sano, R.W. Picard, Stress recognition using wearable sensors and mobile phones, in Humaine Association Conference on Affective Computing and Intelligent Interaction, pp. 671–676 (2013)

    Google Scholar 

  80. M. Valstar, B. Schuller, K. Smith, T. Almaev, F. Eyben, J. Krajewski, R. Cowie, M. Pantic, Avec 20143d dimensional affect and depression recognition challenge, in 4th ACM International Workshop on Audio/Visual Emotion Challenge (2014)

    Google Scholar 

  81. S. Poria, E. Cambria, N. Howard, G. Huang, A. Hussain, Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 174, 50–59 (2016)

    Article  Google Scholar 

  82. G. McIntyre, R. Gcke, M. Hyett, M. Green, M. Breaks-pear, An approach for automatically measuring facial activity in depressed subjects, in 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Work-shops (2009), pp. 1–8

    Google Scholar 

  83. M.R. Morales, R. Levitan, Speech vs. text: A comparative analysis of features for depression detection systems, in 2016 IEEE Spoken Language Technology Workshop (SLT), pp. 136–143 (2016)

    Google Scholar 

  84. N.W. Hashim, M. Wilkes, R. Salomon, J. Meggs, D.J. France, Evaluation of voice acoustics as predictors of clinical depression scores. J. Voice 31(2), 256.e1–256.e6 (2017)

    Article  Google Scholar 

  85. D. Mowery, A. Park, M. Conway, C. Bryan, Towards automatically classifying depressive symptoms from twitter data for population health, in Proceedings of the Workshop on Computational Modeling of Peoples Opinions, Personality, and Emotions in Social Media, pp. 182–191 (2016)

    Google Scholar 

  86. G. Coppersmith, C. Harman, M. Dredze, Measuring post traumatic stress disorder in twitter, in ICWSM (2014)

    Google Scholar 

  87. K. Kang, C. Yoon, E.Y. Kim, Identifying depressive users in twitter using multimodal analysis, in International Conference on Big Data and Smart Computing (BigComp) (IEEE, 2016), pp. 231–238

    Google Scholar 

  88. C. Zucco, B. Calabrese, M. Cannataro, Sentiment analysis and affective computing for depression monitoring, in 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (2017)

    Google Scholar 

  89. M. Gavrilescu, N. Vizireanu, Predicting depression, anxiety, and stress levels from videos using the facial action coding system. Sensors (Basel) 19(17) (2019). https://doi.org/10.3390/s19173693

  90. Y. Zhu, Y. Shang, Z. Shao, G. Guo, Automated depression diagnosis based on deep networks to encode facial appearance and dynamics. IEEE Trans. Affect. Comput. 9(4), 578–584 (2018). https://doi.org/10.1109/TAFFC.2017.2650899

    Article  Google Scholar 

  91. A.S. Cohen, G.M. Najolia, Y. Kim, T.J. Dinzeo, On the boundaries of blunt affect/alogia across severe mental illness: implications for research domain criteria. Schizophr. Res. 140(1–3), 41–45 (2012). https://doi.org/10.1016/j.schres.2012.07.00

    Article  Google Scholar 

  92. S. Harati, A. Crowell, H. Mayberg, J. Kong, S. Nemati, Discriminating clinical phases of recovery from major depressive disorder using the dynamics of facial expression, in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), January 01, 2016 (IEEE, United States, 2016)

    Google Scholar 

  93. A. Haque, M. Guo, A.S. Miner, L. Fei-Fei, Measuring depression symptom severity from spoken language and 3D facial expressions. Sound 2, 1–7 (2018)

    Google Scholar 

  94. C.L. Lisetti, F. Nasoz, Using noninvasive wearable computers to recognize human emotions from physiological signals. EURASIP J. Appl. Signal. Process. 2004, 1672–1687 (2004). https://doi.org/10.1155/S1110865704406192

    Article  Google Scholar 

  95. L. Li, J.H. Chen, Advances in Artificial Reality and Tele-Existence, Vol. 4282. Emotion recognition using physiological signals. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, Germany, 2006), pp. 437–446

    Google Scholar 

  96. M. Patel, S.K.L. Lal, D. Kavanagh, P. Rossiter, Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst. Appl. 38, 7235–7242 (2011). https://doi.org/10.1016/j.eswa.2010.12.028

    Article  Google Scholar 

  97. C.D. Katsis, G. Ganiatsas, D.I. Fotiadis, An integrated telemedicine platform for the assessment of affective physiological states. Diagn. Pathol. 1(1), 1–16 (2006)

    Article  Google Scholar 

  98. C. Becker-Asano, WASABI: Affect Simulation for Agents With Believable Interactivity (IOS Press, Clifton, VA, 2008)

    Google Scholar 

  99. E. Hudlicka (2015a) From habits to standards: towards systematic design of emotion mod- els and affective architectures, in Towards Pragmatic Computational Models of Affective Processes, eds. by J.B. Tibor Bosse, J. Dias, J. van der Zwaan (Springer, New York, pp. 1–21)

    Google Scholar 

  100. C. Macleod, A. Mathews, Cognitive bias modification approaches to anxiety. Ann. Rev. Clin. Psychol. 8, 189–217 (2012)

    Article  Google Scholar 

  101. J.C. Quiroz, T. Bongolan, K. Ijaz, Alexa depression and anxiety self-tests: a preliminary analysis of user experience and trust, in Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers (UbiComp-ISWC ‘20). Association for Computing Machinery, New York, NY, USA (2020), pp. 494–496. https://doi.org/10.1145/3410530.3414374

  102. S. Alghowinem, R. Goecke, M. Wagner, G. Parkerx, M. Breakspear, Head pose and movement analysis as an indicator of depression, in 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva (2013), pp. 283–288. https://doi.org/10.1109/acii.2013.53

  103. Sinha N. (2021) Introducing Gamification for advancing current mental healthcare and treatment practices, in G. Marques, A.K. Bhoi, V.H.C. Albuquerque, K.S. Hareesha (eds) IoT in Healthcare and Ambient Assisted Living. Studies in Computational Intelligence, vol 933. Springer, Singapore. https://doi.org/10.1007/978-981-15-9897-5_11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, N. (2021). Affective Computing and Emotion-Sensing Technology for Emotion Recognition in Mood Disorders. In: Marques, G., Kumar Bhoi, A., de la Torre Díez, I., Garcia-Zapirain, B. (eds) Enhanced Telemedicine and e-Health. Studies in Fuzziness and Soft Computing, vol 410. Springer, Cham. https://doi.org/10.1007/978-3-030-70111-6_16

Download citation

Publish with us

Policies and ethics