Skip to main content

Diseases of Immune Dysregulation

  • Chapter
  • First Online:
Cellular Primary Immunodeficiencies

Part of the book series: Rare Diseases of the Immune System ((RDIS))

  • 756 Accesses

Abstract

Inborn errors of immune regulation are a heterogeneous group of genetic disorders with variable clinical manifestations, including lymphoproliferation, autoimmunity, and increased susceptibility to infections. They are caused by defects in genes involved in controlling when and how the immune system must turn on, which and how much cytokines release, which antigens should be eliminated and which neglected, and why and when the immune response has to turn off. A defective regulation of one or more of these mechanisms leads to the recognition of self-antigen or to an excessive response to foreign antigens, and finally to and/or hyperinflammation that damage cells and organs. The treatment of these disorders is often challenging, as it often requires immunosuppression in the presence of increased risk of infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pelanda R, Piccirillo CA (2008) Tolerance, immune regulation, and autoimmunity: cells and cytokines that make a difference. Curr Opin Immunol 20:629–631

    Google Scholar 

  2. Kisielow P, Von Boehmer H (1995) Development and selection of T cells: facts and puzzles. Adv Immunol 58:87–209

    Google Scholar 

  3. Takaba H, Takayanagi H (2017) The mechanisms of T cell selection in the Thymus. Trends Immunol 8(11):805–816

    Google Scholar 

  4. Boraschi D, Italiani P (2018) Innate immune memory: time for adopting a correct terminology. Front Immunol 19;9:799

    Google Scholar 

  5. Koch U, Radtke F (2011) Mechanisms of t cell development and transformation. Annu Rev Cell Dev Biol 27:539–62

    Google Scholar 

  6. Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5(10):772–82

    Google Scholar 

  7. Peterson P, Org T, Rebane A (2008) Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat Rev Immunol 8(12):948–57

    Google Scholar 

  8. Mueller DL (2010) Mechanisms maintaining peripheral tolerance. Nat Immunol 11(1):21–7

    Google Scholar 

  9. Xing Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4(6):1–15

    Article  Google Scholar 

  10. Chen L, Flies DB (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Reviews Immunology. 13(4):227–42

    Google Scholar 

  11. Chambers CA, Allison JP (1997) Co-stimulation in T cell responses. Curr Opin Immunol 9(3):396–404

    Google Scholar 

  12. Yang K, Chi H (2012) MTOR and metabolic pathways in T cell quiescence and functional activation. Semin Immunol 24(6):421–8

    Google Scholar 

  13. Waickman AT, Powell JD (2012) mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 249(1):43–58

    Google Scholar 

  14. Wykes MN, Lewin SR (2018) Immune checkpoint blockade in infectious diseases. Nat Rev Immunol 18(2):91–104

    Google Scholar 

  15. Wardemann, Hedda; Yurasov, Sergey; Schaefer, Anne; Young, James W.; Meffre, Eric; Nussenzweig, Michel C. (2003-09-05). "Predominant autoantibody production by early human B cell precursors". Science. 301 (5638): 1374–1377

    Google Scholar 

  16. Powell BR, Buist NRM, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100(5):731–7

    Google Scholar 

  17. Satake N, Nakanishi M, Okano M, Tomizawa K, Ishizaka A, Kojima K et al (1993) A Japanese family of X-linked auto-immune enteropathy with haemolytic anaemia and polyendocrinopathy. Eur J Pediatr 152(4):313–5

    Google Scholar 

  18. Wildin RS, Smyk-Pearson S, Filipovich AH (2002) Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 39(8):537–45

    Google Scholar 

  19. Myers AK, Perroni L, Costigan C, Reardon W (2006) Clinical and molecular findings in IPEX syndrome. Arch Dis Child 91(1):63–4

    Google Scholar 

  20. Gambineri E, Torgerson TR, Ochs HD (2003) Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 15(4):430–5

    Google Scholar 

  21. Barzaghi F, Passerini L, Bacchetta R (2012) Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol 3:211

    Google Scholar 

  22. Roberts J, Searle J (1995) Neonatal diabetes mellitus associated with severe diarrhea, hyperimmunoglobulin e syndrome, and absence of islets of langerhans. Fetal Pediatr Pathol 15(3):477–83

    Google Scholar 

  23. Chatila TA, Blaeser F, Ho N, Lederman HM, Voulgaropoulos C, Helms C et al (2000) JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106(12):R75–81

    Google Scholar 

  24. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27(1):18–20

    Google Scholar 

  25. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–1

    Google Scholar 

  26. Barzaghi F, Amaya Hernandez LC, Neven B, Ricci S, Kucuk ZY, Bleesing JJ et al (2018) Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study. J Allergy Clin Immunol 141(3):1036–1049.e5

    Google Scholar 

  27. Park E, Chang HJ, Shin J, Lim BJ, Jeong HJ, Lee KB et al (2015) Familial IPEX syndrome: Different glomerulopathy in two siblings. Pediatr Int 57(2):e59–61

    Google Scholar 

  28. Baris S, Schulze I, Ozen A, Aydiner EK, Altuncu E, Karasu GT et al (2014) Clinical heterogeneity of immunodysregulation, polyendocrinopathy, enteropathy, X-linked: pulmonary involvement as a non-classical disease manifestation. J Clin Immunol 34(6):601–6

    Google Scholar 

  29. Nieves DS, Phipps RP, Pollock SJ, Ochs HD, Zhu Q, Scott GA et al (2004) Dermatologic and immunologic findings in the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Arch Dermatol 140(4):466–72

    Google Scholar 

  30. Gambineri E, Perroni L, Passerini L, Bianchi L, Doglioni C, Meschi F et al (2008) Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol 122(6):1105–1112.e1

    Google Scholar 

  31. Savova R, Arshinkova M, Houghton J, Konstantinova M, Gaydarova M, Georgieva E et al (2014) Clinical case of immune dysregulation, polyendocrinopaty, enteropathy, X-linked (IPEX) syndrome with severe immune deficiency and late onset of endocrinopathy and enteropathy. Case Rep Med 2014:564926

    Google Scholar 

  32. An YF, Xu F, Wang M, Zhang ZY, Zhao XD (2011) Clinical and molecular characteristics of immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome in China. Scand J Immunol 74(3):304–309

    Google Scholar 

  33. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–6

    Google Scholar 

  34. Hori S, Nomura T, Sakaguchi S (2017) Control of regulatory T cell development by the transcription factor Foxp3. J Immunol 198(3):981–985

    Google Scholar 

  35. Georgiev P, Charbonnier LM, Chatila TA (2019) Regulatory T cells: the many faces of Foxp3. J Clin Immunol 39(7):623–640

    Google Scholar 

  36. Stock P, Akbari O, Berry G, Freeman GJ, DeKruyff RH, Umetsu DT (2004) Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyperreactivity. Nat Immunol 5(11):1149–56

    Google Scholar 

  37. Lu L, Barbi J, Pan F The regulation of immune tolerance by FOXP3. Nat Rev Immunol 2017(17):703–717

    Google Scholar 

  38. Charbonnier LM, Cui Y, Stephen-Victor E, Harb H, Lopez D, Bleesing JJ et al (2019) Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat Immunol 20(9):1208–1219

    Article  CAS  Google Scholar 

  39. Barzaghi F, Passerini L, Gambineri E, Ciullini Mannurita S, Cornu T, Kang ES et al (2012) Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J Autoimmun 38(1):49–58

    Google Scholar 

  40. d’Hennezel E, Bin DK, Torgerson T, Piccirillo C (2012) The immunogenetics of immune dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 49(5):291–302

    Google Scholar 

  41. Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24:209–26

    Google Scholar 

  42. Bacchetta R, Barzaghi F, Roncarolo MG (2016) From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci 1417(1):5–22

    Google Scholar 

  43. Ochs HD, Gambineri E, Torgerson TR (2007) IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunologic Research 38(1-3):112–21

    Google Scholar 

  44. Jones AD, Barnhard S (2017) Auto anti-e in a 2 month old male: A case of IPEX. Transfusion. 57: 122A

    Google Scholar 

  45. Hoshino A, Kanegane H, Nishi M, Tsuge I, Tokuda K, Kobayashi I et al (2019) Identification of autoantibodies using human proteome microarrays in patients with IPEX syndrome. Clin Immunol 203:9–13

    Google Scholar 

  46. Aschermann S, Lehmann CHK, Mihai S, Schett G, Dudziak D, Nimmerjahn F (2013) B cells are critical for autoimmune pathology in scurfy mice. Proc Natl Acad Sci U S A 110(47):19042–7

    Google Scholar 

  47. Kobayashi I, Kubota M, Yamada M, Tanaka H, Itoh S, Sasahara Y et al (2011) Autoantibodies to villin occur frequently in IPEX, a severe immune dysregulation, syndrome caused by mutation of FOXP3. Clin Immunol 41(1):83–9

    Google Scholar 

  48. Tsuda M, Torgerson TR, Selmi C, Gambineri E, Carneiro-Sampaio M, Mannurita SC et al (2010) The spectrum of autoantibodies in IPEX syndrome is broad and includes antimitochondrial autoantibodies. J Autoimmun 35(3):265–8

    Google Scholar 

  49. Kinnunen T, Chamberlain N, Morbach H, Choi J, Kim S, Craft J et al (2013) Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells. Blood 121(9):1595–1603

    Article  CAS  Google Scholar 

  50. Wollenberg I, Agua-Doce A, Hernández A, Almeida C, Oliveira VG, Faro J et al (2011) Regulation of the germinal center reaction by Foxp3 + follicular regulatory T cells. J Immunol 187(9):4553–60

    Google Scholar 

  51. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF et al (2011) Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med 17(8):975–82

    Google Scholar 

  52. Sage PT, Sharpe AH (2016) T follicular regulatory cells. Immunol Rev 271(1):246–59

    Google Scholar 

  53. Bakke AC, Purtzer MZ, Wildin RS (2004) Prospective immunological profiling in a case of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX). Clin Exp Immunol 137(2):373–8

    Google Scholar 

  54. Barzaghi F, Cristina Amaya Hernandez L, Neven B, Ricci S, Yesim Kucuk Z, Bleesing JJ et al (2018) Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study on behalf of the Primary Immune Deficiency Treatment Consortium (PIDTC) and the Inborn Errors Working Party (IEWP) of the European Society for Blood and Marrow Transplantation (EBMT). J Allergy Clin Immunol 141:1036–1049.e5

    Google Scholar 

  55. Neufeld M, Maclaren N, Blizzard R (1980) Autoimmune polyglandular syndromes. Pediatr Ann 9(4):154–62

    Google Scholar 

  56. Capalbo D, Improda N, Esposito A, De Martino L, Barbieri F, Betterle C, et al. (2013) Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy from the pediatric perspective. Journal of Endocrinological Investigation. 36(10):903–12

    Google Scholar 

  57. Ferre EMN, Rose SR, Rosenzweig SD, Burbelo PD, Romito KR, Niemela JE et al (2016) Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathycandidiasis-ectodermal dystrophy. JCI Insight 1(13):e88782

    Google Scholar 

  58. Dominguez M, Crushell E, Ilmarinen T, McGovern E, Collins S, Chang B et al (2006) Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in the Irish population. J Pediatr Endocrinol Metab 19(11):1343–52

    Google Scholar 

  59. Mazza C, Buzi F, Ortolani F, Vitali A, LDLD N, Weber G et al (2011) Clinical heterogeneity and diagnostic delay of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome. Clin Immunol 139(1):6–11

    Google Scholar 

  60. Kisand K, Peterson P (2015) Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Clin Immunol 35(5):463–78

    Google Scholar 

  61. Ahonen P, Myllärniemi S, Sipilä I, Perheentupa J (1990) Clinical variation of autoimmune Polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322(26):1829–36

    Google Scholar 

  62. Bruserud Ø, Oftedal BE, Landegren N, Erichsen MM, Bratland E, Lima K et al (2016) A longitudinal follow-up of autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab 101(8):2975–2983

    Google Scholar 

  63. Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M et al (1997) Positional cloning of the APECED gene. Nat Genet 17(4):393–8

    Google Scholar 

  64. Aaltonen J, Björses P, Perheentupa J, Horelli-Kuitunen N, Palotie A, Peltonen L et al (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17(4):399–403

    Google Scholar 

  65. Stolarski B, Pronicka E, Korniszewski L, Pollak A, Kostrzewa G, Rowińska E et al (2006) Molecular background of polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome in a polish population: novel AIRE mutations and an estimate of disease prevalence. Clin Genet 70(4):348–54

    Google Scholar 

  66. Halonen M, Eskelin P, Myhre AG, Perheentupa J, Husebye ES, Kämpe O et al (2002) AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J Clin Endocrinol Metab 87(6):2568–74

    Google Scholar 

  67. Faiyaz-Ul-Haque M, Bin-Abbas B, Al-Abdullatif A, Abdullah Abalkhail H, Toulimat M, Al-Gazlan S et al (2009) Novel and recurrent mutations in the AIRE gene of autoimmune polyendocrinopathy syndrome type 1 (APS1) patients. Clin Genet 76(5):431–40

    Google Scholar 

  68. Giraud M, Yoshid H, Abramson J, Rahl PB, Young RA, Mathis D et al (2012) Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A 109(2):535–40

    Google Scholar 

  69. Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire’s partners in the molecular control of immunological tolerance. Cell 140(1):123–135

    Article  CAS  Google Scholar 

  70. Org T, Rebane A, Kisand K, Laan M, Haljasorg U, Andreson R et al (2009) AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum Mol Genet 18(24):4699–710

    Google Scholar 

  71. Macedo C, Evangelista AF, Magalhães DA, Fornari TA, Linhares LL, Junta CM et al (2009 Oct) Evidence for a network transcriptional control of promiscuous gene expression in medullary thymic epithelial cells. Mol Immunol 46(16):3240–3244

    Article  CAS  Google Scholar 

  72. Gardner JM, DeVoss JJ, Friedman RS, Wong DJ, Tan YX, Zhou X et al (2008) Deletional tolerance mediated by extrathymic aire-expressing cells. Science 321(5890):843–7

    Google Scholar 

  73. Blizzard RM, Kyle M (1963) Studies of the adrenal antigens and antibodies in Addison’s disease. J Clin Invest 42(10):1653–60

    Google Scholar 

  74. Söderbergh A, Gustafsson J, Ekwall O, Hallgren Å, Nilsson T, Kämpe O et al (2006) Autoantibodies linked to autoimmune polyendocrine syndrome type I are prevalent in down syndrome. Acta Paediatr Int J Paediatr 95(12):1657–60

    Google Scholar 

  75. Alimohammadi M, Björklund P, Hallgren Å, Pöntynen N, Szinnai G, Shikama N et al (2008) Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med 358(10):1018–28

    Google Scholar 

  76. Hedstrand H, Ekwall O, Haavik J, Landgren E, Betterle C, Perheentupa J et al (2000) Identification of tyrosine hydroxylase as an autoantigen in autoimmune polyendocrine syndrome type I. Biochem Biophys Res Commun 267(1):456–61

    Google Scholar 

  77. Söderbergh A, Myhre AG, Ekwall O, Gebre-Medhin G, Hedstrand H, Landgren E et al (2004) Prevalence and clinical associations of 10 defined autoantibodies in autoimmune polyendocrine syndrome type I. J Clin Endocrinol Metab 89(2):557–62

    Google Scholar 

  78. Krohn K, Uibo R, Aavik E, Peterson P, Savilahti K, Uibo R et al (1992) Identification by molecular cloning of an autoantigen associated with Addison’s disease as steroid 17α-hydroxylase. Lancet 339(8796):770–3

    Google Scholar 

  79. Meyer S, Woodward M, Hertel C, Vlaicu P, Haque Y, Kärner J et al (2016) AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell 166(3):582–595

    Article  CAS  Google Scholar 

  80. Sarkadi AK, Taskó S, Csorba G, Tóth B, Erdos M, Maródi L (2014) Autoantibodies to IL-17A may be correlated with the severity of mucocutaneous candidiasis in APECED patients. J Clin Immunol 34(2):181–93

    Google Scholar 

  81. Popler J, Alimohammadi M, Kämpe O, Dalin F, Dishop MK, Barker JM et al (2012) Autoimmune polyendocrine syndrome type 1: utility of KCNRG autoantibodies as a marker of active pulmonary disease and successful treatment with rituximab. Pediatr Pulmonol 47(1):84–7

    Google Scholar 

  82. Canale VC, Smith CH (1967) Chronic lymphadenopathy simulating malignant lymphoma. J Pediatr 70(6):891–9

    Google Scholar 

  83. Sneller MC, Straus SE, Jaffe ES, Jaffe JS, Fleisher TA, Stetler-Stevenson M et al (1992) A novel lymphoproliferative/autoimmune syndrome resembling murine Ipr/gld disease. J Clin Invest 90(2):334–41

    Google Scholar 

  84. Sneller MC, Wang J, Dale JK, Strober W, Middelton LA, Choi Y et al (1997) Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 89(4):1341–8

    Google Scholar 

  85. Neven B, Magerus-Chatinet A, Florkin B, Gobert D, Lambotte O, De Somer L et al (2011) Asurvey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 118(18):4798–807

    Google Scholar 

  86. Price S, Shaw PA, Seitz A, Joshi G, Davis J, Niemela JE et al (2014) Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 123(13):1989–99

    Google Scholar 

  87. Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ et al (2010) Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH international workshop. Blood 116(14):e35–e40

    Google Scholar 

  88. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middelton LA, Lin AY et al (1995) Dominant interfering fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81(6):935–46

    Google Scholar 

  89. Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB (1996) Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 335(22):1643–9

    Google Scholar 

  90. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD (1996) Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 98(5):1107–13

    Google Scholar 

  91. Wang J, Zheng L, Lobito A, Chan FKM, Dale J, Sneller M et al (1999) Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98(1):47–58

    Google Scholar 

  92. Salzer E, Santos-Valente E, Klaver S, Ban SA, Emminger W, Prengemann NK et al (2013) B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase C δ. Blood 121(16):3112–6

    Google Scholar 

  93. Oliveira JB, Bidère N, Niemela JE, Zheng L, Sakai K, Nix CP et al (2007) NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A 104(21):8953–8

    Google Scholar 

  94. Niemela JE, Lu L, Fleisher TA, Davis J, Caminha I, Natter M et al (2011) Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood 117(10):2883–6

    Google Scholar 

  95. Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A et al (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20(12):1410–1416

    Google Scholar 

  96. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345(6204):1623–1627

    Google Scholar 

  97. Castro JE, Listman JA, Jacobson BA, Wang Y, Lopez PA, Ju S et al (1996) Fas modulation of apoptosis during negative selection of thymocytes. Immunity 5(6):617–27

    Google Scholar 

  98. Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F et al (2003) Two adjacent trimeric fas ligands are required for fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23(4):1428–40

    Google Scholar 

  99. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–8

    Google Scholar 

  100. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10(1):26–35

    Google Scholar 

  101. Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E et al (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457(7232):1019–22

    Google Scholar 

  102. Van Parijs L, Ibraghimov A, Abbas AK (1996) The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 4(3):321–8

    Google Scholar 

  103. Hammond DM, Nagarkatti PS, Goté LR, Seth A, Hassuneh MR, Nagarkatti M (1993) Double-negative T cells from MRL-lpr/lpr mice mediate cytolytic activity when triggered through adhesion molecules and constitutively express perforin gene. J Exp Med 178(6):2225–30

    Google Scholar 

  104. Rathmell JC, Cooke MP, Ho WY, Grein J, Townsend SE, Davis MM et al (1995) CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4 + T cells. Nature 376(6536):181–4

    Google Scholar 

  105. Hao Z, Duncan GS, Seagal J, Su YW, Hong C, Haight J et al (2008) Fas receptor expression in germinal-center B cells is essential for T and B lymphocyte homeostasis. Immunity 29(4):615–27

    Google Scholar 

  106. Miano M, Cappelli E, Pezzulla A, Venè R, Grossi A, Terranova P et al (2019) FAS-mediated apoptosis impairment in patients with ALPS/ALPS-like phenotype carrying variants on CASP10 gene. Br J Haematol 187(4):502–508

    Google Scholar 

  107. Bodley Scott R, AHT R-S (1939) Histiocytic medullary reticulosis. Lancet 234:194–198

    Google Scholar 

  108. Farquhar JW, Claireaux AE (1952) Familial haemophagocytic reticulosis. Arch Dis Child 27(136):519–525

    Article  CAS  Google Scholar 

  109. Janka GE (2012) Familial and acquired Hemophagocytic Lymphohistiocytosis. Annu Rev Med 63:233–46

    Google Scholar 

  110. Bergsten E, Horne AC, Aricó M, Astigarraga I, Egeler RM, Filipovich AH et al (2017) Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood 130(25):2728–2738

    Google Scholar 

  111. Janka GE (1983) Familial hemophagocytic lymphohistiocytosis. Eur J Pediatr 40(3):221–30

    Google Scholar 

  112. Henter JI, Elinder G, Soder O, Ost A (1991) Incidence in Sweden and clinical features of familial hemophagocytic lymphohistiocytosis. Acta Paediatr Scand 80(4):428–35

    Google Scholar 

  113. Rudd E, Göransdotter Ericson K, Zheng C, Uysal Z, Ozkan A, Gürgey A et al (2006) Spectrum and clinical implications of syntaxin 11 gene mutations in familial haemophagocytic lymphohistiocytosis: association with disease-free remissions and haematopoietic malignancies. J Med Genet 43(4):e14

    Google Scholar 

  114. Solomou EE, Gibellini F, Stewart B, Malide D, Berg M, Visconte V et al (2007) Perforin gene mutations in patients with acquired aplastic anemia. Blood 109(12):5234–7

    Google Scholar 

  115. Allen M, De Fusco C, Legrand F, Clementi R, Conter V, Danesino C, et al (2001). Familial hemophagocytic lymphohistiocytosis: how late can the onset be? Haematologica. 86(5):499–503

    Google Scholar 

  116. Jordan MB, Allen CE, Weitzman S, Filipovich AH, McClain KL (2011) How I treat hemophagocytic lymphohistiocytosis. Blood 118(15): 4041–4052

    Google Scholar 

  117. Henter JI, Horne AC, Aricó M, Egeler RM, Filipovich AH, Imashuku S et al (2007) HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 48(2):124–31

    Google Scholar 

  118. Trottestam H, Horne AC, Aricò M, Egeler RM, Filipovich AH, Gadner H et al (2011) Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: long-term results of the HLH-94 treatment protocol. Blood 118(17):4577–84

    Google Scholar 

  119. Henter JI, Elinder G, Soder O, Hansson M, Andersson B, Andersson U (1991) Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 78(11):2918–22

    Google Scholar 

  120. Tang Y, Xu X, Song H, Yang S, Shi S, Wei J et al (2008) Early diagnostic and prognostic significance of a specific Th1/Th2 cytokine pattern in children with haemophagocytic syndrome. Br J Haematol 143(1):84–91

    Google Scholar 

  121. Aricò M, Danesino C, Pende D, Moretta L (2001) Pathogenesis of haemophagocytic lymphohistiocytosis. Br J Haematol 114(4):761–9

    Google Scholar 

  122. Aricò M, Danesino C, Pende D, Moretta L (2001) Pathogenesis of haemophagocytic lymphohistiocytosis. Br J Haematol

    Google Scholar 

  123. Egeler RM, Shapiro R, Loechelt B, Filipovich A (1996) Characteristic immune abnormalities in hemophagocytic lymphohistiocytosis. J Pediatr Hematol Oncol 18(4):340–5

    Google Scholar 

  124. Eife R, Janka GE, Belohradsky BH, Holtmann H (1989) Natural killer cell function and interferon production in familial hemophagocyticlymphohistiocytosis. Pediatr Hematol Oncol 6(3):265–72

    Google Scholar 

  125. Stepp SE, Dufourcq-Lagelouse R, Le Deist F, Bhawan S, Certain S, Mathew PA et al (1999) Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286(5446):1957–9

    Google Scholar 

  126. Ishii E, Ueda I, Shirakawa R, Yamamoto K, Horiuchi H, Ohga S et al (2005) Genetic subtypes of familial hemophagocytic lymphohistiocytosis: correlations with clinical features and cytotoxic T lymphocyte/natural killer cell functions. Blood 105(9):3442–8

    Google Scholar 

  127. Risma K, Jordan MB (2012) Hemophagocytic lymphohistiocytosis: updates and evolving concepts. Curr Opin Pediatr 24(1):9–15

    Google Scholar 

  128. Schmid JP, Côte M, Ménager MM, Burgess A, Nehme N, Ménasché G et al (2010) Inherited defects in lymphocyte cytotoxic activity. Immunol Rev 235(1):10–23

    Google Scholar 

  129. Rivière S, Galicier L, Coppo P, Marzac C, Aumont C, Lambotte O et al (2014) Reactive hemophagocytic syndrome in adults: a retrospective analysis of 162 patients. Am J Med 127(11):1118–1125

    Google Scholar 

  130. Janka GE, Lehmberg K et al (2013) Hematology Am Soc Hematol Educ Program 2013:605–611

    Article  Google Scholar 

  131. Zhang K, Jordan MB, Marsh RA, Johnson JA, Kissell D, Meller J et al (2011) Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood 118(22):5794–8

    Google Scholar 

  132. Ohadi M, MRA L, Sham P, Zhao J, Dearlove AM, Shiach C et al (1999) Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3-22 by Homozygosity mapping. Am J Hum Genet 64(1):165–71

    Google Scholar 

  133. Feldmann J, Callebaut I, Raposo G, Certain S, Bacq D, Dumont C et al (2003) Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115(4):461–73

    Google Scholar 

  134. zur Stadt U, Schmidt S, Kasper B, Beutel K, Diler AS, Henter JI et al (2005) Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet 14(6):827–34

    Google Scholar 

  135. zur Stadt U, Rohr J, Seifert W, Koch F, Grieve S, Pagel J et al (2009) Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet 85(4):482–92

    Google Scholar 

  136. Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol 15(6):388–400

    Google Scholar 

  137. He J, Johnson JL, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G et al (2016) Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell 27(3):572–87

    Google Scholar 

  138. Teng FYH, Wang Y, Tang BL (2001) The syntaxins. Genome Biol 2(11):REVIEWS3012

    Google Scholar 

  139. Osugi Y, Hara J, Tagawa S, Takai K, Hosoi G, Matsuda Y et al (1997) Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood 89(11):4100–3

    Google Scholar 

  140. Filipovich A, McClain K, Grom A (2010) Histiocytic disorders: recent insights into pathophysiology and practical guidelines. Biol Blood Marrow Transplant 16(1 Suppl):S82–9

    Google Scholar 

  141. Ménasché G, Pastural E, Feldmann J, Certain S, Ersoy F, Dupuis S et al (2000) Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 25(2):173–6

    Google Scholar 

  142. Karim MA, Nagle DL, Kandil HH, Bürger J, Moore KJ, Spritz RA (1997) Mutations in the Chediak-Higashi syndrome gene (CHS1) indicate requirement for the complete 3801 amino acid CHS protein. Hum Mol Genet 6(7):1087–9

    Google Scholar 

  143. Dell’Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS (1999) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor. Mol Cell 3(1):11–21

    Google Scholar 

  144. Janka GE (2007) Familial and acquired hemophagocytic lymphohistiocytosis. Eur J Pediatr

    Google Scholar 

  145. Purtilo DT, Cassel C, Yang JP (1974) Fatal infectious mononucleosis in familial lymphohistiocytosis. N Engl J Med 291(14):736

    Google Scholar 

  146. Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H et al (2011) X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood 117(1):53–62

    Google Scholar 

  147. Brandau O, Schuster V, Weiss M, Hellebrand H, Fink FM, Kreczy A et al (1999) Epstein-Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum Mol Genet 8(13):2407–13

    Google Scholar 

  148. Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A et al (2000) Correlation of mutations of the SH2D1A gene and Epstein-Barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood 96(9):3118–25

    Google Scholar 

  149. Seemayer TA, Gross TG, Egeler RM, Pirruccello SJ, Davis JR, Kelly CM et al (1995) X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res 38(4):471–8

    Google Scholar 

  150. Engel P, Eck MJ, Terhorst C (2003) The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 3(10):813–21

    Google Scholar 

  151. Gaspar HB, Sharifi R, Gilmour KC, Thrasher AJ (2002) X-linked lymphoproliferative disease: clinical, diagnostic and molecular perspective. Br J Haematol 119(3):585–95

    Google Scholar 

  152. Gifford CE, Weingartner E, Villanueva J, Johnson J, Zhang K, Filipovich AH et al (2014) Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations. Cytom Part B Clin Cytom 86(4):263–71

    Google Scholar 

  153. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM et al (1998) Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 20(2):129–35

    Google Scholar 

  154. Li C, Iosef C, Jia CYH, Gkourasas T, Han VKM, Li SSC (2003) Disease-causing SAP mutants are defective in ligand binding and protein folding. Biochemistry 42(50):14885–92

    Google Scholar 

  155. Rezaei N, Mahmoudi E, Aghamohammadi A, Das R, Nichols KE (2011) X-linked lymphoproliferative syndrome: a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol 152(1):13–30

    Google Scholar 

  156. Deenick EK, Chan A, Ma CS, Gatto D, Schwartzberg PL, Brink R et al (2010) Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33(2):241–53

    Google Scholar 

  157. Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K, Wolff D et al (2018) Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4–insufficient subjects. J Allergy Clin Immunol 142(6):1932–1946

    Google Scholar 

  158. Egg D, Schwab C, Gabrysch A, Arkwright PD, Cheesman E, Giulino-Roth L et al (2018) Increased risk for malignancies in 131 affected CTLA4 mutation carriers. Front Immunol 9:2012

    Google Scholar 

  159. Sansom DM (2000) CD28, CTLA-4 and their ligands: who does what and to whom? Immunology 01(2):169–77

    Google Scholar 

  160. Rudd CE (2008) The reverse stop-signal model for CTLA4 function. Nat Rev Immunol 8(2):153–60

    Google Scholar 

  161. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (2016) CD28 Costimulation: from mechanism to therapy. Immunity 44(5):973–88

    Google Scholar 

  162. Walker LSK, Sansom DM (2011) The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 11(12):852–63

    Google Scholar 

  163. Kavanagh B, O’Brien S, Lee D, Hou Y, Weinberg V, Rini B et al (2008) CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4 + T cells in a dose-dependent fashion. Blood 112(4):1175–83

    Google Scholar 

  164. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM et al (2011) Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029):600–3

    Google Scholar 

  165. Abbas AK, Lohr J, Knoechel B, Nagabhushanam V (2004) T cell tolerance and autoimmunity. Autoimmun Rev 3(7-8):471–5

    Google Scholar 

  166. Eagar TN, Karandikar NJ, Bluestone JA, Miller SD (2002) The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur J Immunol 32(4):972–81

    Google Scholar 

  167. Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224:166–82

    Google Scholar 

  168. Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH (2001) CTLA-4 regulates induction of anergy in vivo. Immunity 14(2):145–55

    Google Scholar 

  169. Klocke K, Sakaguchi S, Holmdahl R, Wing K (2016) Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A 26;113(17)

    Google Scholar 

  170. Lopez-Herrera G, Tampella G, Pan-Hammarström Q, Herholz P, Trujillo-Vargas CM, Phadwal K et al (2012) Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet 90(6):986–1001

    Google Scholar 

  171. Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS, Aljebreen A et al (2012) LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol 130(2):481–8.e2

    Google Scholar 

  172. Serwas NK, Kansu A, Santos-Valente E, Kuloğlu Z, Demir A, Yaman A, Diaz LYG, Artan R, Sayar E, Ensari A, Grimbacher B, Boztug K (2015) Atypical manifestation of LRBA deficiency with predominant IBD-like phenotype. Inflamm Bowel Dis 21(1):40–7

    Google Scholar 

  173. Cagdas D, Halaçlı SO, Tan Ç, Lo B, Çetinkaya PG, Esenboğa S et al (2019) A Spectrum of clinical findings from ALPS to CVID: several novel LRBA defects. J Clin Immunol 39(7):726–738

    Google Scholar 

  174. Gámez-Díaz L, Sigmund EC, Reiser V, Vach W, Jung S, Grimbacher B (2018) Rapid flow cytometry-based test for the diagnosis of lipopolysaccharide responsive beige-like anchor (LRBA) deficiency. Front Immunol 9:720

    Google Scholar 

  175. Gámez-Díaz L, August D, Stepensky P, Revel-Vilk S, Seidel MG, Noriko M et al (2016) The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol 137(1):223–230

    Google Scholar 

  176. Lo B, Abdel-Motal UM (2017) Lessons from CTLA-4 deficiency and checkpoint inhibition. Curr Opin Immunol 49:14–19

    Google Scholar 

  177. Alroqi FJ, Charbonnier LM, Baris S, Kiykim A, Chou J, Platt CD et al (2018) Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol 141(3):1050–1059

    Google Scholar 

  178. Tesch VK, Abolhassani H, Shadur B, Zobel J, Mareika Y, Sharapova S, Karakoc-Aydiner E, Rivière JG, Garcia-Prat M, Moes N, Haerynck F, Gonzales-Granado LI, Santos Pérez JL, Mukhina A, Shcherbina A, Aghamohammadi A, Hammarström L, Dogu F, Haskologlu S, İkinc SM (2019) Long-term outcome of LRBA deficiency in 76 patients after various treatment modalities as evaluated by the immune deficiency and dysregulation activity (IDDA) score. J Allergy Clin Immunol 145(5):1452–1463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Proietti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Proietti, M. (2021). Diseases of Immune Dysregulation. In: D'Elios, M.M., Baldari, C.T., Annunziato, F. (eds) Cellular Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-030-70107-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70107-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70106-2

  • Online ISBN: 978-3-030-70107-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics