Skip to main content

Outpatient Management of LVAD

  • Chapter
  • First Online:
Case-Based Device Therapy for Heart Failure
  • 700 Accesses

Abstract

Left ventricular assist devices (LVADs) have revolutionized the therapy for advanced heart failure patients by improving the survival and quality of life. Despite all advancement, and improvement in LVAD technology, patients with implanted LVAD will face multiple challenges, including significant lifestyle modifications, complications associated with LVAD, and long-term management. One of the most crucial steps in improving the outcome of LVAD patients is the preparation of the patients and their caregivers before hospital discharge. These steps include adequate education of the patients and their caregivers, assessment of the home safety, referring to rehabilitation centers, and medically optimization of the patients before discharge. After discharge, patients will need close follow-ups. Patients, caregivers, and LVAD teams are responsible for managing blood pressure, driveline exit-site, and equipment. Most of the LVAD patients are on multiple medications, and there are unique pharmacological considerations that the LVAD patients and their caregivers need to be aware of; these include the anticoagulation therapy, antiplatelet therapy, and drug interactions. Caregivers are one of the essential members of the LVAD team. This chapter will review the outpatient challenges and management strategies for LVAD patients and their caregivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL. Epidemiology of heart failure. Circ Res. 2013;113:646–59.

    Google Scholar 

  2. Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385:812–24.

    Google Scholar 

  3. Writing Group Members, Lloyd-Jones D, Adams RJ, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121:46–215.

    Google Scholar 

  4. Bleumink GS, Knetsch AM, Sturkenboom MC, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure: the Rotterdam study. Eur Heart J. 2004;25:1614–19.

    Google Scholar 

  5. de Jonge N, Kirkels H, Lahpor JR, et al. Exercise performance in patients with end-stage heart failure after implantation of a left ventricular assist device and after heart transplantation: an outlook for permanent assisting? J Am Coll Cardiol. 2001;37:1794–9.

    Google Scholar 

  6. Foray A, Williams D, Reemtsma K, Oz M, Mancini D. Assessment of submaximal exercise capacity in patients with left ventricular assist devices. Circulation. 1996;94:II222–6.

    Google Scholar 

  7. Khan T, Levin HR, Oz MC, Katz SD. Delayed reversal of impaired metabolic vasodilation in patients with end-stage heart failure during long-term circulatory support with a left ventricular assist device. J Heart Lung Transplant. 1997;16:449–53.

    CAS  PubMed  Google Scholar 

  8. Anker SD, Chua TP, Ponikowski P, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96:526–34.

    Article  CAS  PubMed  Google Scholar 

  9. Dang NC, Topkara VK, Kim BT, Lee BJ, Remoli R, Naka Y. Nutritional status in patients on left ventricular assist device support. J Thorac Cardiovasc Surg. 2005;130:e3–4.

    Google Scholar 

  10. Holdy K, Dembitsky W, Eaton LL, et al. Nutrition assessment and management of left ventricular assist device patients. J Heart Lung Transplant. 2005;24:1690–6.

    Article  PubMed  Google Scholar 

  11. Willey JZ, Boehme AK, Castagna F, Yuzefpolskaya M, Garan AR, Topkara V, et al. Hypertension and stroke in patients with left ventricular assist devices (LVADs). Curr Hypertens Rep. 2016;18(2):12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuousflow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  13. Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  14. Gambillara V, Thacher T, Silacci P, Stergiopulos N. Effects of reduced cyclic stretch on vascular smooth muscle cell function of pig carotids perfused ex vivo. Am J Hypertens. 2008;21(4):425–31.

    Article  PubMed  Google Scholar 

  15. Thacher T, Gambillara V, da Silva RF, Silacci P, Stergiopulos N. Reduced cyclic stretch, endothelial dysfunction, and oxidative stress: an ex vivo model. Cardiovasc Pathol: Off J Soc Cardiovasc Pathol. 2010;19(4):e91–8.

    Article  CAS  Google Scholar 

  16. Demirozu ZT, Radovancevic R, Hochman LF, Gregoric ID, Letsou GV, Kar B, et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant. 2011;30(8):849–53.

    Google Scholar 

  17. Patel AC, Dodson RB, Cornwell WK 3rd, Hunter KS, Cleveland JC Jr, Brieke A, et al. Dynamic changes in aortic vascular stiffness in patients bridged to transplant with continuous-flow left ventricular assist devices. JACC Heart Fail. 2017;5(6):449–59.

    Article  PubMed  Google Scholar 

  18. Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant. 2014;33(1):23–34.

    Article  Google Scholar 

  19. Nassif ME, Tibrewala A, Raymer DS, Andruska A, Novak E, Vader JM, et al. Systolic blood pressure on discharge after left ventricular assist device insertion is associated with subsequent stroke. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant. 2015;34(4):503–8.

    Article  Google Scholar 

  20. Farrar DJ, Bourque K, Dague CP, Cotter CJ, Poirier VL. Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor. ASAIO J (Am Soc Artif Intern Organs:1992). 2007;53(3):310–5.

    Google Scholar 

  21. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 international society for heart and lung transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant. 2013;32(2):157–87.

    Article  Google Scholar 

  22. Frazier OH, Khalil HA, Benkowski RJ, Cohn WE. Optimization of axial-pump pressure sensitivity for a continuous-flow total artificial heart. J Heart Lung Transplant. 2010;29(6):687–91.

    Article  CAS  PubMed  Google Scholar 

  23. Nelson JA, Mauermann WJ, Barbara DW. Left ventricle assist devices and noncardiac surgery. Adv Anesthesia. 2018;36:99–123.

    Article  Google Scholar 

  24. Lanier GM, Orlanes K, Hayashi Y, Murphy J, Flannery M, Te-Frey R, et al. Validity and reliability of a novel slow cuff-deflation system for noninvasive blood pressure monitoring in patients with continuous-flow left ventricular assist device. Circ Heart Fail. 2013;6(5):1005–12.

    Article  PubMed  Google Scholar 

  25. Bennett MK, Roberts CA, Dordunoo D, Shah A, Russell SD. Ideal methodology to assess systemic blood pressure in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant: Off Publ Int Soc Heart Transplant. 2010;29(5):593–4.

    Article  Google Scholar 

  26. Bennett MK, Roberts CA, Dordunoo D, et al. Ideal methodology to assess systemic blood pressure in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2010;29:593–4.

    Article  PubMed  Google Scholar 

  27. Lanier GM, Orlanes K, Hayashi Y, et al. Validity and reliability of a novel slow cuff-deflation system for noninvasive blood pressure monitoring in patients with continuous-flow left ventricular assist device. Circ Heart Fail. 2013;6:1005–12.

    Article  PubMed  Google Scholar 

  28. Colombo PC, Lanier GM, Orlanes K, Yuzefpolskaya M, Demmer RT. Usefulness of a standard automated blood pressure monitor in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34:1633–5.

    Article  PubMed  Google Scholar 

  29. Bourque K, Cotter C, Dague C, Harjes D, Dur O, Duhamel J, et al. Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibility. ASAIO J (Am Soc Artif Intern Organs: 1992). 2016;62(4):375–83.

    Google Scholar 

  30. Yousefzai R, Brambatti M, Tran HA et al. Benefits of neurohormonal therapy in patients with continuous-flow left ventricular assist devices. ASAIO J. 2019 Jun 6.

    Google Scholar 

  31. Epstein NE. Preoperative, intraoperative, and postoperative measures to further reduce spinal infections. Surg Neurol Int. 2011;2:17.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wickline SA, Fischer KC. Can infections be imaged in implanted devices? ASAIO J. 2000;46:S80–1.

    Article  CAS  PubMed  Google Scholar 

  33. Hannan MM, Husain S, Mattner F, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant. 2011;30:375–84.

    Article  PubMed  Google Scholar 

  34. Dean D, Kallel F, Ewald GA, et al. Reduction in driveline infection rates: results from the HeartMate II Multicenter Driveline Silicone Skin Interface (SSI) Registry. J Heart Lung Transplant. 2015;34:781–9.

    Article  PubMed  Google Scholar 

  35. Imamura T, Kinugawa K, Nitta D, et al. Readmission due to driveline infection can be predicted by new score by using serum albumin and body mass index during longterm left ventricular assist device support. J Artif Organs. 2015;18:120–7.

    Article  CAS  PubMed  Google Scholar 

  36. Pereda D, Conte JV. Left ventricular assist device driveline infections. Cardiol Clin. 2011;29:515–27.

    Article  PubMed  Google Scholar 

  37. Myers TJ, Khan T, Frazier OH. Infectious complications associated with ventricular assist systems. ASAIO J. 2000; 46: S28–S36.

    Google Scholar 

  38. Stahovich M, Sundareswaran KS, Fox S, et al. Reduce driveline trauma through stabilization and exit site management: 30 days feasibility result from the multicenter RESIST study. ASAIO J. 2016;62:240–5.

    Article  PubMed  Google Scholar 

  39. Schmid C, Hammel D, Deng MC, et al. Ambulatory care of patients with left ventricular assist devices. Circulation 1999;100:II224–8.

    Google Scholar 

  40. Slaughter MS, Sobieski MA, Martin M, Dia M, Silver MA. Home discharge experience with the Thoratec TLC-II portable driver. ASAIO J. 2007;53:132–5.

    Article  PubMed  Google Scholar 

  41. Klodell CT, Staples ED, Aranda JM Jr, et al. Managing the post-left ventricular assist device patient. Congest Heart Fail. 2006;12:41–5.

    Article  PubMed  Google Scholar 

  42. Himmelreich G, Ullmann H, Riess H, Rosch R, Loebe M, Schiessler A, Hetzer R. Pathophysiologic role of contact activation in bleeding followed by thromboembolic complications after implantation of a ventricular assist device. ASAIO J. 1995 Jul-Sep; 41(3):M790–4.

    Google Scholar 

  43. Slaughter, Sobieski MA, Gallagher C, Graham J, Brandise J, Stein R. Fibrinolytic activation during long-term support with the HeartMate II left ventricular assist device. ASAIO J. 2008 Jan-Feb;54(1):115–9.

    Google Scholar 

  44. John R, Panch S, Hrabe J, Wei P, Solovey A, Joyce L, Hebbel R. Activation of endothelial and coagulation systems in left ventricular assist device recipients. Ann Thorac Surg. 2009;88(4):1171–9 Oct.

    Article  PubMed  Google Scholar 

  45. Slaughter MS, Sobieski MA, Graham JD, Pappas PS, Tatooles AJ, Koenig SC. Platelet activation in heart failure patients supported by the HeartMate II ventricular assist device. Int J Artif Organs. 2011;34:461–8.

    Article  CAS  PubMed  Google Scholar 

  46. Matsubayashi H, Fastenau DR, McIntyre JA. Changes in platelet activation associated with left ventricular assist system placement. J Heart Lung Transplant. 2000;19:462–8.

    Article  CAS  PubMed  Google Scholar 

  47. Meyer AL, Malehsa D, Budde U, Bara C, Haverich A, Strueber M. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. JACC Heart Fail. 2014;2:141–5.

    Article  PubMed  Google Scholar 

  48. Aaronson KD, Slaughter MS, Miller LW, McGee EC, Cotts WG, Acker MA, Jessup ML, Gregoric ID, Loyalka P, Frazier OH, Jeevanandam V, Anderson AS, Kormos RL, Teuteberg JJ, Levy WC, Naftel DC, Bittman RM, Pagani FD, Hathaway DR, Boyce SW. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125:3191–200.

    Article  PubMed  Google Scholar 

  49. Galeone A, Rotunno C, Guida P, Bisceglie A, Rubino G, Schinosa LDL, Paparella D. Monitoring incomplete heparin reversal and heparin rebound after cardiac surgery. J Cardiothorac Vasc Anesth. 2013;27:853–8.

    Article  CAS  PubMed  Google Scholar 

  50. Jennings DL, Brewer R, Williams C. Impact of continuous flow left ventricular assist device on the pharmacodynamics response to warfarin early after implantation. Ann Pharmacother. 2012;46:1266–7.

    Article  PubMed  Google Scholar 

  51. Jennings D, McDonnell J, Schillig J. Assessment of longterm anticoagulation in patients with a continuous-flow leftventricular assist device: a pilot study. J Thorac Cardiovasc Surg. 2011;142:e1–2.

    Article  PubMed  Google Scholar 

  52. Bishop MA, Streiff MB, Ensor CR, Tedford RJ, Russell SD, Ross PA. Pharmacist-managed international normalized ratio patient self-testing is associated with increased time in therapeutic range in patients with left ventricular assist devices at an Academic Medical Center. ASAIO J. 2014;60:193–8.

    Article  PubMed  Google Scholar 

  53. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Rame JE, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J. The 2013 international society for heart and lung transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.

    Article  PubMed  Google Scholar 

  54. Backes D, van den Bergh WM, van Duijn AL, Lahpor JR, van Dijk D, Slooter AJ. Cerebrovascular complications of left ventricular assist devices. Eur J Cardiothorac Surg. 2012;42:612–20.

    Article  PubMed  Google Scholar 

  55. Fischer S, Glas KE. A review of cardiac transplantation. Anesthesiol Clinic. 2013;31(2):383–403.

    Article  Google Scholar 

  56. Bellumkonda L, Jacoby D. Hospital to home with mechanical circulatory support. Curr Heart Fail Rep. 2013 Sep;10(3):212–8. Review.

    Google Scholar 

  57. Feldman D, Pamboukian SV, Teuteberg JJ, et al. International society for heart and lung transplantation. J Heart Lung Transplant. 2013;32(2):157–87 Feb.

    Article  PubMed  Google Scholar 

  58. McIlvennan CK, Narayan M, Cannon A, Bradley WJ, Nowels CT, Brieke A, Cleveland JC, Matlock DD, Allen LA. Approaches to decision support and preparation for destination therapy left ventricular assist device: a nationwide sample of mechanical circulatory support coordinators. Poster presentation at the American Heart Association Quality of Care and Outcomes Research Conference; May, 2013.

    Google Scholar 

  59. Bunzel B, Laederach-Hofmann K, Wieselthaler G, Roethy W, Wolner E. Mechanical circulatory support as a bridge to heart transplantation: what remains? Long-term emotional sequelae in patients and spouses. J Heart Lung Transplant. 2007;26(4):384–9.

    Article  PubMed  Google Scholar 

  60. Ozbaran B, Kose S, Yagdi T, Engin C, Erermis S, Yazici KU, Noyan A, Ozbaran M. Depression and anxiety levels of the mothers of children and adolescents with left ventricular assist devices. Pediatr Transplant. 2012;16(7):766–70 Nov.

    Article  PubMed  Google Scholar 

  61. Akbarin M, Aarts C. Being a close relative of a patient with a left ventricular assist device. Eur J Cardiovasc Nurs. 2013;12(1):64–8 Feb.

    Article  PubMed  Google Scholar 

  62. Baker K, Flattery M, Salyer J, Haugh KH, Maltby M. Caregiving for patients requiring left ventricular assistance device support. Heart Lung. 2010 May-Jun;39(3):196–200.

    Google Scholar 

  63. Brush S, Budge D, Alharethi R, McCormick AJ, MacPherson JE, Reid BB, Ledford ID, Smith HK, Stoker S, Clayson SE, Doty JR, Caine WT, Drakos S, Kfoury AG. End-of-life decision making and implementation in recipients of a destination left ventricular assist device. J Heart Lung Transplant. 2010;29(12):1337–41 Dec.

    Article  PubMed  Google Scholar 

  64. Casida J. The lived experience of spouses of patients with a left ventricular assist device before heart transplantation. Am J Crit Care. 2005;14(2):145–51 Mar.

    Article  PubMed  Google Scholar 

  65. Egerod I, Overgaard D. Taking a back seat: support and self-preservation in close relatives of patients with left ventricular assist device. Eur J Cardiovasc Nurs. 2012;11(4):380–7 Dec.

    Article  PubMed  Google Scholar 

  66. Kaan A, Young QR, Cockell S, Mackay M. Emotional experiences of caregivers of patients with a ventricular assist device. Prog Transplant. 2010;20(2):142–7 Jun.

    Article  PubMed  Google Scholar 

  67. Kitko LA, Hupcey JE, Gilchrist JH, Boehmer JP. Caring for a spouse with end-stage heart failure through implantation of a left ventricular assist device as destination therapy. Heart Lung. 2713 May-Jun;42(3):195–201.

    Google Scholar 

  68. Marcuccilli L, Casida JM. From insiders’ perspectives: adjusting to caregiving for patients with left ventricular assist devices. Prog Transplant. 2011;21(2):137–43 Jun.

    Article  PubMed  Google Scholar 

  69. Magid M, Jones J, Allen LA, McIlvennan CK, Magid K, Sterling JA, Matlock DD. The perceptions of important elements of caregiving for as LVAD patient: A qualitative meta-synthesis. J Cardiovasc Nurs. 2016; 31(3):215–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Urey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yousefzai, R., Urey, M. (2021). Outpatient Management of LVAD. In: Birgersdotter-Green, U., Adler, E. (eds) Case-Based Device Therapy for Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-030-70038-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70038-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70037-9

  • Online ISBN: 978-3-030-70038-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics