Skip to main content

Cyber-Physical Systems: A Pilot Adoption in Manufacturing

  • Chapter
  • First Online:
Futuristic Trends in Intelligent Manufacturing

Abstract

The promise of the Fourth Industrial Revolution (IR4), coupled with the agility demanded by the COVID-19 pandemic has driven large scale adoption of IR4 technologies. However studies show that only 30% of all digital transformation projects succeed, making it a risky proposition, especially for Small Medium Enterprises (SMEs). Successful prototype implementations are needed for SMEs to believe in the power of IR4 initiatives and to motivate them to invest time and effort. In this paper, we showcase such a prototype implementation by first providing an overview of the cyber-physical system architectural framework in the manufacturing context. Next, we showcase a real-life, low-cost, reliable pilot that will boost IR4.0 technology adoption for SMEs in a timely manner without large investments or disruption to existing operations. The presented case study shows an example of a pilot project that demonstrated early success, with well-established needs and measured signposts to harness the benefits of IR4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vacca, A., Simpson, C., & Smith, E. (2020). Worldwide digital transformation spending guide. Retrieved November 23 2020, from https://www.idc.com/getdoc.jsp?containerId=IDC_P32575.

  2. MIT. (2020). The promise of the fourth industrial revolution. Retrieved November 23 2020, from https://www.technologyreview.com/2020/11/19/1012165/the-promise-of-the-fourth-industrial-revolution/.

  3. Ragavan, S. K. V., & Shanmugavel, M. (2016). Engineering cyber-physical systems—Mechatronics wine in new bottles? In 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), May 2016, pp. 1–5, https://doi.org/10.1109/iccic.2016.7919516.

  4. Garms, F., Jansen, C., Schmitz, C., Hallerstede, S., & Tschiesner, A. (2019, September). Capturing value at scale in discrete manufacturing with Industry 4.0| McKinsey. Retrieved November 23 2020, from https://www.mckinsey.com/industries/advanced-electronics/our-insights/capturing-value-at-scale-in-discrete-manufacturing-with-industry-4-0.

  5. Forth, P., Reichert, T., de Laubier, R., & Chakraborty, S. (2020). Flipping the odds of digital transformation success|BCG. Retrieved November 23 2020, from https://www.bcg.com/publications/2020/increasing-odds-of-success-in-digital-transformation.

  6. Karre, H., Hammer, M., Kleindienst, M., & Ramsauer, C. (2017). Transition towards an Industry 4.0 State of the LeanLab at Graz University of Technology. Procedia Manufacturing, 9, 206–213. https://doi.org/10.1016/j.promfg.2017.04.006.

    Article  Google Scholar 

  7. Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implementations and challenges. Computers in Industry, 81, 11–25. https://doi.org/10.1016/j.compind.2015.08.004.

    Article  Google Scholar 

  8. Mazzolini, M., Cavadini, F. A., Montalbano, G., & Forni, A. (2017). structured approach to the design of automation systems through IEC 61499 standard. Procedia Manufacturing, 11, 905–913. https://doi.org/10.1016/j.promfg.2017.07.194.

    Article  Google Scholar 

  9. Leitao, P., Barbosa, J., Papadopoulou, M. E. C., & Venieris, I. S. (2015). Standardization in cyber-physical systems: The ARUM case. In Proceedings of the IEEE International Conference on Industrial Technology, Vol. 2015-June, no. June, pp. 2988–2993, https://doi.org/10.1109/icit.2015.7125539.

  10. Dotoli, M., Fay, A., Miśkowicz, M., & Seatzu, C. (2017). Advanced control in factory automation: A survey. International Journal of Production Research, 55(5), 1243–1259. https://doi.org/10.1080/00207543.2016.1173259.

    Article  Google Scholar 

  11. Ladiges, J., et al. (2018). Integration of modular process units into process control systems. IEEE Transactions on Industry Applications, 54(2), 1870–1880. https://doi.org/10.1109/TIA.2017.2782679.

    Article  Google Scholar 

  12. Arroyo, E., Fay, A., Chioua, M., & Hoernicke, M. (2014). Integrating plant and process information as a basis for automated plant diagnosis tasks. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–8, https://doi.org/10.1109/etfa.2014.7005098.

  13. Wan, J., Yan, H., Suo, H., & Li, F. (2011). Advances in cyber-physical systems research. KSII Transaction on Internet Information Systems, 5(11), 1891–1908. https://doi.org/10.3837/tiis.2011.11.001.

    Article  Google Scholar 

  14. Lee, E. A., & Arunkumar Seshia, S. (2011). Introduction to embedded systems: A cyber-physical approach (2nd ed.). MIT Press.

    Google Scholar 

  15. Yu, B., Zhou, J., & Hu, S. (2020). Cyber-physical systems: An overview. In S. Hu & B. Yu (Eds.), Big data analytics for cyber-physical systems (pp. 1–11). Cham: Springer.

    Google Scholar 

  16. Zhong, R. Y., Xu, C., Chen, C., & Huang, G. Q. (2017). Big data analytics for physical Internet-based intelligent manufacturing shop floors. International Journal of Production Research, 55(9), 2610–2621. https://doi.org/10.1080/00207543.2015.1086037.

    Article  Google Scholar 

  17. Jiang, Z., Jin, Y., M. E., & Li, Q. (2018). Method of tasks and resources matching and analysis for cyber-physical production system. Advance Mechanical Engineering, 10(5), 168781401877782. https://doi.org/10.1177/1687814018777828.

  18. Samir, K., Maffei, A., & Onori, M. A. (2019). Real-Time asset tracking; a starting point for digital twin implementation in manufacturing. Procedia CIRP, 81, 719–723. https://doi.org/10.1016/j.procir.2019.03.182.

    Article  Google Scholar 

  19. Strang, D., & Anderl, R. (2014). Assembly process driven component data model in cyber-physical production systems.

    Google Scholar 

  20. Dotoli, M., Fay, A., Miśkowicz, M., & Seatzu, C. (2019). An overview of current technologies and emerging trends in factory automation. International Journal of Production Research, 57(15–16), 5047–5067. https://doi.org/10.1080/00207543.2018.1510558.

    Article  Google Scholar 

  21. Lins, T., & Oliveira, R. A. R. (2020). Cyber-physical production systems retrofitting in context of industry 4.0. Computers & Industrial Engineering, 139, 106193. https://doi.org/10.1016/j.cie.2019.106193.

    Article  Google Scholar 

  22. Suh, S. H., Noh, S. K., & Choi, Y. J. (1995). A PC-based retrofitting toward CAD/CAM/CNC integration. Computers & Industrial Engineering, 28(1), 133–146. https://doi.org/10.1016/0360-8352(94)00033-J.

    Article  Google Scholar 

  23. Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP, 40, 536–541. https://doi.org/10.1016/j.procir.2016.01.129.

    Article  Google Scholar 

  24. Baker, J., et al. (2016). Requirements engineering for retrofittable subsea equipment. In Proceedings—2016 IEEE 24th International Requirements Engineering Conference, RE 2016, pp. 226–235, https://doi.org/10.1109/re.2016.44.

  25. Arjoni, D. H., et al. (2018). Manufacture equipment retrofit to allow usage in the industry 4.0. In Proceedings—2017 2nd International Conference on Cybernetics, Robotics and Control, CRC 2017, Vol. 2018-January, pp. 155–161, https://doi.org/10.1109/crc.2017.46.

  26. Ferreira, L. L. et al. (2017). A pilot for proactive maintenance in industry 4.0. https://doi.org/10.1109/wfcs.2017.7991952.

  27. Vachalek, J., Bartalsky, L., Rovny, O., Sismisova, D., Morhac, M., & Loksik, M. (2017). The digital twin of an industrial production line within the industry 4.0 concept. In Proceedings of the 2017 21st International Conference on Process Control, PC 2017, pp. 258–262, https://doi.org/10.1109/pc.2017.7976223.

  28. Langmann, R., & Rojas-Pena, L. F. (2016). A PLC as an industry 4.0 component. In Proceedings of 2016 13th International Conference on Remote Engineering and Virtual Instrumentation, REV 2016, pp. 10–15, https://doi.org/10.1109/rev.2016.7444433.

  29. Lee, E. A. (2007). Computing foundations and practice for cyber-physical systems: A preliminary report. [Online]. Retrieved from http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-72.html.

  30. Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on cyber-physical systems. IEEE/CAA Journal of Automatica Sinica, 4(1), 27–40. https://doi.org/10.1109/JAS.2017.7510349.

    Article  Google Scholar 

  31. Gunes, V., Peter, S., Givargis, T., & Vahid, F. (2014). A survey on concepts, applications, and challenges in cyber-physical systems. KSII Transaction on Internet Information Systems, 8(12). https://doi.org/10.3837/tiis.2014.12.001.

  32. Lin, K., & Panahi, M. (2010). A real-time service-oriented framework to support sustainable cyber-physical systems. In 2010 8th IEEE International Conference on Industrial Informatics, pp. 15–21, https://doi.org/10.1109/indin.2010.5549473.

  33. Maier, M. W., Emery, D., & Hilliard, R. (2001). Software architecture: Introducing IEEE standard 1471. Computer (Long. Beach. Calif), 34(4), 107–109. https://doi.org/10.1109/2.917550.

  34. Wan, K., Hughes, D., Man, K., Krilavičius, T., & Zou, S. (2010). Investigation on composition mechanisms for cyber physical systems. International Journal of Design Analysis and Tools for Integrated Circuits and Systems, 2.

    Google Scholar 

  35. Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001.

    Article  Google Scholar 

  36. Schweichhart, K. Reference architectural model industrie 4.0 (RAMI 4.0).

    Google Scholar 

  37. Resman, M. (2019). A new architecture model for smart manufacturing: A performance analysis and comparison with the RAMI 4.0 reference model. Journal home apem-journal.org, 14(2), 153–165. https://doi.org/10.14743/apem2019.2.318.

  38. Rizvi, M. A. K., & Chew, E. (2018). Towards systematic design of cyber-physical product-service systems. In Proceedings of International Design Conference, DESIGN, 2018, vol. 6, pp. 2961–2974, https://doi.org/10.21278/idc.2018.0248.

  39. Clark, T., Sammut, P., & Willans, J. (2008). Applied meta modelling: A foundation for language driven development. Ceteva.

    Google Scholar 

  40. Fitz, T., Theiler, M., & Smarsly, K. (2019). A metamodel for cyber-physical systems. Advance in Engineering Informatics, 41, 100930. https://doi.org/10.1016/j.aei.2019.100930.

    Article  Google Scholar 

  41. Cárdenas, A. A., Amin, S., & Sastry, S. (2008). Secure control: Towards survivable cyber-physical systems. In Proceedings—International Conference on Distributed Computing Systems, pp. 495–500. https://doi.org/10.1109/icdcs.workshops.2008.40.

  42. Cheng, Z., Tan, Y., & Lim, Y. (2016). Design and evaluation of hybrid temperature control for cyber-physical home systems. International Journal of Modelling, Identification and Control, 26(3), 196–206. https://doi.org/10.1504/IJMIC.2016.080295.

    Article  Google Scholar 

  43. Sanislav, T. (2012). Cyber-physical systems—Concept, challenges and research areas. Control Engineering Application Informatics, 14, 28–33.

    Google Scholar 

  44. Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing System, 37, 517–527. https://doi.org/10.1016/j.jmsy.2015.04.008.

    Article  Google Scholar 

  45. Horvath, I., & Gerritsen, B. (2012). Cyber-physical systems: Concepts, technologies and implementation principles. Proceeding on TMCE, 2012, 19–36.

    Google Scholar 

  46. Vorne. (2020). What is OEE (Overall Equipment Effectiveness)? OEE. Retrieved November 16 2020, from https://www.oee.com/.

  47. MSV Textile and Machinery. (2020). “Fukuhara V-LPJ4B 34”—Circular knitting machines (double jersey). Retrieved November 16 2020, from http://msv.com.pl/en-maszyna-3746-1335449627-fukuhara_vlpj4b.html.

  48. Malche, T., & Maheshwary, P. (2015). Harnessing the Internet of Things (IoT): A review. International Journal of Advance Research Computer Science Software Engineering, 5.

    Google Scholar 

  49. SIMATIC IOT2000| SIMATIC IOT gateways| Siemens Global. Retrieved November 16 2020, from https://new.siemens.com/global/en/products/automation/pc-based/iot-gateways/iot2000.html.

  50. FRDM-K64F Platform|Freedom Development Board|Kinetis MCUs|NXP. (2020). Retrieved November 16 2020, from https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F.

  51. Altair SmartWorks|smartcore overview. Retrieved November 16 2020, from https://www.altairsmartworks.com/smartcore-overview.

  52. Fink, G. A., Edgar, T. W., Rice, T. R., MacDonald, D. G., & Crawford, C. E. (2017). Security and privacy in cyber-physical systems. In Cyber-physical systems: Foundations, principles and applications (pp. 129–141). Elsevier Inc.

    Google Scholar 

  53. Narayanan, S. N., Khanna, K., Panigrahi, B. K., & Joshi, A. (2018). Security in smart cyber-physical systems: A case study on smart grids and smart cars. In Smart cities cybersecurity and privacy (pp. 147–163). Elsevier.

    Google Scholar 

  54. Wang, L., & Haghighi, A. (2016). Combined strength of holons, agents and function blocks in cyber-physical systems. Journal of Manufacturing Systems, 40, 25–34. https://doi.org/10.1016/j.jmsy.2016.05.002.

    Article  Google Scholar 

  55. Erol-Kantarci, M., Illig, D. W., Rumbaugh, L. K., & Jemison, W. D. (2017). Energy-harvesting low-power devices in cyber-physical systems. In Cyber-physical systems: Foundations, principles and applications (pp. 55–74). Elsevier Inc.

    Google Scholar 

  56. Törngren, M. et al. (2017). Characterization, analysis, and recommendations for exploiting the opportunities of cyber-physical systems. In Cyber-physical systems: Foundations, principles and applications (pp. 3–14). Elsevier Inc.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Monash University, Malaysian Textile and Apparel Center and MOHE grant FRGS/1/2015/TK08/MUSM/02/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veera Ragavan Sampath Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veeraragavan, S., Jiann, E.T., Leong, R., Sampath Kumar, V.R. (2021). Cyber-Physical Systems: A Pilot Adoption in Manufacturing. In: Palanikumar, K., Natarajan, E., Sengottuvelu, R., Davim, J.P. (eds) Futuristic Trends in Intelligent Manufacturing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-70009-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70009-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70008-9

  • Online ISBN: 978-3-030-70009-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics