Skip to main content

Evaluation of Collaborative Intrusion Detection System Architectures in Mobile Edge Computing

  • Chapter
  • First Online:
Mobile Edge Computing

Abstract

With the advent of 5th Generation (5G) of mobile networks, a diverse range of new computer networking technologies are being devised to meet the stringent demands of applications that require ultra-low latency, high bandwidth and geolocation-based services. Mobile Edge Computing (MEC) is a prominent example of such an emerging technology, which provides cloud computing services at the edge of the network using mobile base stations. This architectural shift of services from centralised cloud data centers to the network edge, helps reduce bandwidth usage and improve response time, meeting the ultra-low latency requirements laid out for 5G. However, MEC also inherits some of the vulnerabilities affecting traditional networks and cloud computing, such as coordinated attacks. Previous works have proposed the use of Intrusion Detection Systems (IDS), specifically Collaborative Intrusion Detection Systems (CIDS), which have proven to be effective in identifying distributed attacks. However, identifying the right CIDS model is not straightforward due to the tradeoff between different factors such as detection accuracy, network overhead, computation and memory overhead. In this chapter, we outline some of the characteristics relevant for evaluating CIDS deployment models and survey existing CIDS architectures in the context of MEC, while presenting novel strategies and architectures of our own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Telecommunications Standards Institute (2014). Mobile-Edge Computing – Introductory Technical White Paper. Retrieved from https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf.

  2. O. Mäkinen, “Streaming at the Edge: Local Service Concepts Utilizing Mobile Edge Computing,” in 2015 9 th International Conference on Next Generation Mobile Applications, Services, and Technologies, 1–6, 2015.

    Google Scholar 

  3. M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai botnet,” in 26 th USENIX Conference on Security Symposium, 1093–1110, 2017.

    Google Scholar 

  4. S. Weagle, “Financial Impact of Mirai DDoS Attack on Dyn Revealed in New Data”. Retrieved from https://www.corero.com/blog/797-financial-impact-of-mirai-ddos-attack-on-dyn-revealed-in-new-data.html.

  5. F. Lin, Y. Zhou, X. An, I. You, and K. R. Choo, “Fair Resource Allocation in an Intrusion-Detection System for Edge Computing: Ensuring the Security of Internet of Things Devices,” in IEEE Consumer Electronics Magazine, 45–50, 2018.

    Google Scholar 

  6. R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges,” in Future Generation Computer Systems, 680–698, 2018.

    Google Scholar 

  7. K. Sha, A. Yang, W. Wei, and S. Davari, “A survey of edge computing based designs for IoT security,” in Digital Communications and Networks, 2019.

    Google Scholar 

  8. A. Mtibaa, K. Harras, H. Alnuweiri, “Friend or Foe? Detecting and Isolating Malicious Nodes in Mobile Edge Computing Platforms,” in 2015 IEEE 7 th International Conference on Cloud Computing Technology and Science, 42–49, 2015.

    Google Scholar 

  9. S. N. Shirazi, A. Gouglidis, A. Farshad, and D. Hutchison, “The Extended Cloud: Review and Analysis of Mobile Edge Computing and Fog From a Security and Resilience Perspective,” in IEEE Journal on Selected Areas in Communications, 35(11), 2586–2595, 2017.

    Google Scholar 

  10. S. Raponi, M. Caprolu, and R. D. Pietro, “Intrusion Detection at the Network Edge: Solutions, Limitations, and Future Directions,” in Zhang, T., Wei., J., Zhang, L. J. (eds) Edge Computing – EDGE 2019. 59–75, 2019.

    Google Scholar 

  11. R. Roman, R. Rios, J. A. Onieva, J. Lopez., “Immune System for the Internet of Things Using Edge Technologies,” in IEEE Internet of Things Journal, 6(3), 4774–4781, 2019.

    Google Scholar 

  12. R. Liao, H. Wen, J. Wu, F. Pan, A. Xu, H. Song, F. Xie, and Y. Jiang, “Security Enhancement for Mobile Edge Computing Through Physical Layer Authentication,” in IEEE Access, 116390–116401, 2019.

    Google Scholar 

  13. N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge Computing: A Survey,” in IEEE Internet of Things Journal, 5(1), 450–465, 2018.

    Google Scholar 

  14. Y. Wang, L. Xie, W. Li, W. Meng, and J. Li, A Privacy-Preserving Framework for Collaborative Intrusion Detection Networks Through Fog Computing,” in S. Wen, W. Wu, & A. Castiglione (Eds.), International Symposium on Cyberspace Safety and Security (pp. 267–279). Springer, Cham, 2017.

    Google Scholar 

  15. W. Meng, Y. Wang, W. Li., Z. Liu, J. Li., and C. W. Probst, “Enhancing Intelligent Alarm Reduction for Distributed Intrusion Detection Systems via Edge Computing,” in W. Susilo, G. Yang (Eds.), Australasian Conference on Information Security and Privacy (pp. 759–767). Springer, Cham, 2018.

    Google Scholar 

  16. R. Sharma, C. A. Chan, C. Leckie, “Evaluation of Centralised vs Distributed Collaborative Intrusion Detection Systems in Multi-Access Edge Computing,” in IFIP Networking 2020, 2020.

    Google Scholar 

  17. E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, M. Fischer, “Taxonomy and Survey of Collaborative Intrusion Detection” in ACM Computing Surveys (CSUR), 47(4), 55, 2015.

    Google Scholar 

  18. A. Blaise, M. Bouet, S. Secci, V. Conan, “Split-and-Merge: Detection Unknown Botnets,” in 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 153–161, 2019.

    Google Scholar 

  19. S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlain, C. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and D. Mansur, “DIDS (Distributed Intrusion Detection System) – motivation, architecture, and an early prototype,” in 14 th National Computer Security Conference, 167–176, 1997.

    Google Scholar 

  20. C. V. Zhou, S. Karunasekara, and C. Leckie, “Evaluation of a Decentralised Architecture for Large Scale Collaborative Intrusion Detection,” in 10 th IFIP/IEEE International Symposium on Integrated Network Management, 80–89, 2007.

    Google Scholar 

  21. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,” in USENIX Annual Technical Conference, 10–10, 2004.

    Google Scholar 

  22. S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenkar, I. Stoica, and H. Yu, “OpenDHT: a public DHT service and its uses,” in Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM ‘05), 73–84, 2005.

    Google Scholar 

  23. B. Iglewicz, and D. Hoaglin (1993). How to detect and handle outliers The ASQC Basic References in Quality Control: Statistical Techniques. [Online] Available at: https://hwbdocuments.env.nm.gov/Los%20Alamos%20National%20Labs/TA%2054/11587.pdf

  24. M. M. Shurman, and M. K. Aljarah, “Collaborative execution of distributed mobile and IoT applications running at the edge,” in 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), 1–5, 2017.

    Google Scholar 

  25. A. Reiter, B. Prūnster, and T. Zefferer, “Hybrid Mobile Edge Computing: Unleashing the Full Potential of Edge Computing in Mobile Device Use Cases,” in 2017 17 th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 935–944, 2017.

    Chapter  Google Scholar 

  26. The CAIDA UCSD “Three Days of Conficker Traffic from the UCSD Network Telescope” Dataset: http://www.caida.org/data/passive/telescope-3days-conficker_dataset.xml

  27. L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile computing,” in IEEE INFOCOM 2016 – The 35 th Annual IEEE International Conference on Computer Communications, 1–9, 2016.

    Google Scholar 

  28. A. Kiani, and N. Ansari, “Toward Hierarchical Mobile Edge Computing: An Auction-Based Profit Maximization Approach,” in IEEE Internet of Things Journal, 2082–2091, 2017.

    Google Scholar 

  29. C. Song, M. Zhang, Y. Zhan, D. Wang, L. Guan, W. Liu, L. Zhang, and S. Xu, “Hierarchical edge cloud enabling network slicing for 5G optical fronthaul,” in IEEE/OSA Journal of Optical Communications and Networking, B60–B70, 2019.

    Google Scholar 

  30. P. Maymounkov, and D. Mazieres, “Kademlia: A peer-to-peer information system based on the xor metric,” in International Workshop on Peer-to-Peer Systems, 53–65, 2002.

    Chapter  Google Scholar 

  31. Savoirfairelinux (2014). savoirfairelinux/opendht. [Online] Available at: https://github.com/savoirfairelinux/opendht.

  32. J. P. Martin, A. Kandasamy, K. Chandrasekaran, and C. T. Joseph, “Elucidating the challenges for the praxis of fog computing: An aspect-based study,” in International Journal of Communication Systems, 32(7), p.e3926, 2019.

    Google Scholar 

  33. B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulas, “Challenges and opportunities in edge computing,” in 2016 IEEE International Conference on Smart Cloud (SmartCloud), 20–26, 2016.

    Google Scholar 

  34. H. Yang, Y. Liang, J. Yuan, Q. Yao, A. Yu, and J. Zhang, “Distributed Blockchain-Based Trusted Multidomain Collaboration for Mobile Edge Computing in 5G and Beyond,” in IEEE Transactions on Industrial Informatics, 2020.

    Google Scholar 

  35. D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Blockchain for 5G and beyond networks: A state of the art survey,” in Journal of Network and Computer Applications, 102693, 2020.

    Google Scholar 

  36. P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture, key technologies, applications, and open issues,” in Journal of Network and Computer Applications, 27–42, 2017.

    Google Scholar 

  37. A. Samir, and C. Pahl, “Self-Adaptive Healing for Containerized Cluster Architectures with Hidden Markov Models,” in 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), 68–73, 2019.

    Chapter  Google Scholar 

  38. B. Magableh, and M. Almiani, “A Self Healing Microservices Architecture: A Case Study in Docker Swarm Cluster,” in International Conference on Advanced Information Networking and Applications, 846–858, 2019.

    Google Scholar 

  39. A. Samir, N. E. Ioini, I. Fronza, H. R. Barzegar, V. T. Le, and C. Pahl, “Anomaly Detection and Analysis for Reliability Management in Clustered Container Architectures,” in International Journal on Advances in Systems and Measurements, 247–264, 2020.

    Google Scholar 

  40. V. K. Singh, E. Vaughan, and J. Rivera, “SHARP-Net: Platform for Self-Healing and Attack Resilient PMU Networks,” in IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), 1–5, 2020.

    Google Scholar 

  41. S. Al-Rubaye, J. Rodriguez, A. Al-Dulaimi, S. Mumtaz, and J. J. P. C. Rodrigues, “Enabling Digital Grid for Industrial Revolution: Self-Healing Cyber Resilient Platform,” in IEEE Network, 219–225, 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Chan, C.A., Leckie, C. (2021). Evaluation of Collaborative Intrusion Detection System Architectures in Mobile Edge Computing. In: Mukherjee, A., De, D., Ghosh, S.K., Buyya, R. (eds) Mobile Edge Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-69893-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69893-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69892-8

  • Online ISBN: 978-3-030-69893-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics