Skip to main content

Futuring: Trends in Fire Science and Management

  • Chapter
  • First Online:
Fire Science

Abstract

We discuss the environmental, social, and technological trends that will influence fire science and management in the coming decades. We begin by discussing the influence of global change, including climate and social changes, on how fires burn, our perceptions of wildland fire, and how we respond to fires. We highlight several of these challenges using the exceptional 2019–2020 wildfire season in Australia. Next, we discuss technological trends related to data collection, data analysis, and simulation that are transforming fire science and management. We end the chapter by discussing the integration of fire science with management, and the training and education of current and future fire professionals. As this is the last chapter of our book, Fire Science from Chemistry to Landscape Management, we hope that the concepts, ideas, and trends discussed provide the foundation for groundbreaking research and sustainable fire management that will guide us into the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M., & Kolden, C. A. (2018). Global patterns of interannual climate–fire relationships. Global Change Biology, 24(11), 5164–5175.

    Article  Google Scholar 

  • Acácio, V., Holmgren, M., Rego, F., Moreira, F., & Mohren, G. M. (2009). Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforestry Systems, 76(2), 389–400.

    Article  Google Scholar 

  • Allen, B. M., Nimmo, D. G., Ierodiaconou, D., VanDerWal, J., Koh, L. P., & Ritchie, E. G. (2018). Futurecasting ecological research: The rise of technology. Ecosphere, 9(5), e02163. https://doi.org/10.1002/ecs2.2163.

    Article  Google Scholar 

  • Andela, N., Van Der Werf, G. R., Kaiser, J. W., Van Leeuwen, T. T., Wooster, M. J., & Lehmann, C. E. (2016). Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences, 13(12), 3717–3734.

    Article  Google Scholar 

  • Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., & Bachelet, D. (2017). A human-driven decline in global burned area. Sci, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108.

    Article  Google Scholar 

  • Andersen, H. E., McGaughey, R. J., & Reutebuch, S. E. (2005). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94(4), 441–449.

    Article  Google Scholar 

  • Archibald, S., Lehmann, C. E., Gómez-Dans, J. L., & Bradstock, R. A. (2013). Defining pyromes and global syndromes of fire regimes. Proceedings of National Academy of Sciences, 110(16), 6442–6447.

    Article  Google Scholar 

  • Aslan, Y. E., Korpeoglu, I., & Ulusoy, Ö. (2012). A framework for use of wireless sensor networks in forest fire detection and monitoring. Computers, Environment and Urban Systems, 36(6), 614–625. https://doi.org/10.1016/j.compenvurbsys.2012.03.002.

    Article  Google Scholar 

  • Association for Fire Ecology (AFE). (2016a). Sexual harassment and gender discrimination in wildland fire management must be addressed. Position Paper: Sexual harrasment and gender discrimination. Eugene: Association for Fire Ecology. Retrieved May 30, 2020, from https://static1.squarespace.com/static/5ea4a2778a22135afc733499/t/5eadf7c2c40da37246e2cd68/1588459459469/AFE+2016+position+paper+on+discrimination+final+11-25.pdf.

  • Association for Fire Ecology (AFE). (2016b). Sexual harassment and gender discrimination in wildland fire management must be addressed. Position Paper: Sexual harrasment and gender discrimination. Eugene: Association for Fire Ecology. Retrieved May 30, 2020, from https://fireecology.org/sexual-harassment-position-paper.

  • Association for Fire Ecology (AFE). (2020). Wildland Fire Professional Certification Program. Association for Fire Ecology. Retrieved June 19, 2020, from https://fireecology.org/professional-certification.

  • Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., & Mahood, A. L. (2017). Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences, 114(11), 2946–2951. https://doi.org/10.1073/pnas.1617394114.

    Article  Google Scholar 

  • Bistinas, I., Harrison, S. P., Prentice, I. C., & Pereira, J. M. C. (2014). Causal relationships vs. emergent patterns in the global controls of fire frequency. Biogeosciences, 11, 5087–5101.

    Article  Google Scholar 

  • Blades, J. J., Klos, P. Z., Kemp, K. B., Hall, T. E., Force, J. E., Morgan, P., & Tinkham, W. T. (2016). Forest managers’ response to climate change science: Evaluating the constructs of boundary objects and organizations. Forest Ecology and Management, 15(360), 376–387.

    Article  Google Scholar 

  • Boer, M. M., de Dios, V. R., & Bradstock, R. A. (2020). Unprecedented burn area of Australian mega forest fires. Nature Climate Change, 10(3), 171–172. https://doi.org/10.1038/s41558-020-0716-1.

    Article  Google Scholar 

  • Borchers Arriagada, N., Palmer, A. J., Bowman, D. M., Morgan, G. G., Jalaludin, B. B., & Johnston, F. H. (2020). Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. The Medical Journal of Australia. https://doi.org/10.5694/mja2.50545.

  • Borys, A., Suckow, F., Reyer, C., Gutsch, M., & Lasch-Born, P. (2016). The impact of climate change under different thinning regimes on carbon sequestration in a German forest district. Mitigation and Adaptation Strategies for Global Change, 21(6), 861–881.

    Article  Google Scholar 

  • Bouabdellah, K., Noureddine, H., & Larbi, S. (2013). Using wireless sensor networks for reliable forest fires detection. Procedia Computer Science, 19, 794–801.

    Article  Google Scholar 

  • Bowman, D. M., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., & Kull, C. A. (2011). The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), 2223–2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x.

    Article  Google Scholar 

  • Box, G. E. (1979). Robustness in the strategy of scientific model building. In R. L. Launer & G. N. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). Cambridge: Academic Press.

    Chapter  Google Scholar 

  • Brandt, P., Ernst, A., Gralla, F., Luederitz, C., Lang, D. J., Newig, J., Reinert, F., Abson, D. J., & von Wehrden, H. (2013). A review of transdisciplinary research in sustainability science. Ecological Economics, 92, 1–15.

    Article  Google Scholar 

  • Butler, D. (2014). Many eyes on Earth. Nature, 5050, 143–144.

    Article  Google Scholar 

  • Casbeer, D. W., Beard, R. W., McLain, T. W., Li, S. M., & Mehra, R. K. (2005). Forest fire monitoring with multiple small Unmanned Air Vehicles (UAVs). In IEEEProceedings of the American Control Conference, Portland, 8–10 June 2005, pp. 3530–3535.

    Google Scholar 

  • Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209.

    Article  Google Scholar 

  • Chisholm, R. A., Cui, J., Lum, S. K., & Chen, B. M. (2013). UAV LiDAR for below-canopy forest surveys. Journal of Unmanned Vehicle Systems, 1(1), 61–68.

    Article  Google Scholar 

  • Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V., & Wikle, C. K. (2009). Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecological Applications, 19(3), 553–570.

    Article  Google Scholar 

  • Cuddington, K., Fortin, M. J., Gerber, L. R., Hastings, A., Liebhold, A., O’Connor, M., & Ray, C. (2013). Process-based models are required to manage ecological systems in a changing world. Ecosphere, 4(2), 1–12.

    Article  Google Scholar 

  • Culina, A., Baglioni, M., Crowther, T. W., Visser, M. E., Woutersen-Windhouwer, S., & Manghi, P. (2018). Navigating the unfolding open data landscape in ecology and evolution. Nature Ecology and Evolution, 2(3), 420–426.

    Article  Google Scholar 

  • Curt, T., & Frejaville, T. (2018). Wildfire policy in Mediterranean France: How far is it efficient and sustainable? Risk Analysis, 38(3), 472–488. https://doi.org/10.1111/risa.12855.

    Article  Google Scholar 

  • Davis, K. T., Dobrowski, S. Z., Higuera, P. E., Holden, Z. A., Veblen, T. T., Rother, M. T., Parks, S. A., Sala, A., & Maneta, M. P. (2019). Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. PNAS, 116(13), 6193–6198.

    Article  Google Scholar 

  • Dray, S., Pélissier, R., Couteron, P., Fortin, M. J., Legendre, P., Peres-Neto, P. R., Bellier, E., Bivand, R., Blanchet, F. G., De Cáceres, M., & Dufour, A. B. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs, 82, 257–275. https://doi.org/10.1890/11-1183.1.

    Article  Google Scholar 

  • Doerr, S. H., & Santín, C. (2016). Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philosophical Transactions of Royal Society B, 371(1696), 20150345. https://doi.org/10.1098/rstb.2015.0345.

    Article  Google Scholar 

  • Durden, J. M., Luo, J. Y., Alexander, H., Flanagan, A. M., & Grossmann, L. (2017). Integrating “big data” into aquatic ecology: Challenges and opportunities. Limnology and Oceanography Bulletin, 26(4), 101–108.

    Article  Google Scholar 

  • Enquist, C. A., Jackson, S. T., Garfin, G. M., Davis, F. W., Gerber, L. R., Littell, J. A., & Hiers, J. K. (2017). Foundations of translational ecology. Frontiers in Ecology and the Environment, 15(10), 541–550.

    Article  Google Scholar 

  • Fan, J., Fang, H., & Liu, H. (2014). Challenges of big data analysis. National Science Review, 1, 293–314. https://doi.org/10.1093/nsr/nwt032.

    Article  Google Scholar 

  • Farley, S. S., Dawson, A., Goring, S. J., & Williams, J. W. (2018). Situating ecology as a big-data science: Current advances, challenges, and solutions. Biosciences, 68(8), 563–576. https://doi.org/10.1093/biosci/biy068.

    Article  Google Scholar 

  • Fernández-Guisuraga, J., Sanz-Ablanedo, E., Suárez-Seoane, S., & Calvo, L. (2018). Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: Opportunities and challenges. Sensors, 18(2), 586.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (2011). Community-based fire management: A review. FAO Forestry Paper 166, Rome. Retrieved March 11, 2020, from http://www.fao.org/3/i2495e/i2495e.pdf.

  • Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., Van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., & Li, F. (2019). Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 16, 57–76. https://doi.org/10.5194/bg-16-57-2019.

    Article  Google Scholar 

  • Gantz, J., & Reinsel, D. (2011). Extracting value from chaos. IDC iView, pp. 1–12.

    Google Scholar 

  • Gao, L., Bruenig, M., & Hunter, J. (2014). Estimating fire weather indices via semantic reasoning over wireless sensor network data streams. International Journal of Web and Semantic Technology, 5(4), 1–20.

    Article  Google Scholar 

  • García, E. M., Serna, M. Á., Bermúdez, A., & Casado, R. (2008). Simulating a WSN-based wildfire fighting support system. In: Proceedings of 14th IEEE International Workshop on Parallel and Distributed Processing with Applications, Melbourne, 8–10 December 2008, pp. 896–902.

    Google Scholar 

  • Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Throw, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.

    Google Scholar 

  • Giglio, L., Randerson, J. T., & van der Werf, G. R. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research – Biogeosciences, 118(1), 317–328.

    Article  Google Scholar 

  • Gill, A. M. (1975). Fire and the Australian flora: A review. Australian Forestry, 38(1), 4–25. https://doi.org/10.1080/00049158.1975.10675618.

    Article  Google Scholar 

  • González-Olabarria, J. R., Rodríguez, F., Fernández-Landa, A., & Mola-Yudego, B. (2012). Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 282, 149–156.

    Article  Google Scholar 

  • Guiomar, N., Godinho, S., Fernandes, P. M., Machado, R., Neves, N., & Fernandes, J. P. (2015). Wildfire patterns and landscape changes in Mediterranean oak woodlands. Science of Total Environment, 536, 338–352.

    Article  Google Scholar 

  • Gustafson, E. J. (2013). When relationships estimated in the past cannot be used to predict the future: Using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecology, 28(8), 1429–1437.

    Article  Google Scholar 

  • Hall, S. A., Burke, I. C., Box, D. O., Kaufmann, M. R., & Stroker, J. M. (2005). Estimating stand structure using discrete-return LiDAR: An example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208, 189–209.

    Article  Google Scholar 

  • Hantson, S., Pueyo, S., & Chuvieco, E. (2015). Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography, 24(1), 77–86.

    Article  Google Scholar 

  • Hartung, C., & Han, R. (2006). FireWxNet: A multi-tiered portable wireless system for monitoring weather conditions in wildland fire environments. In: Proceedings of 4th International Conference on Mobile Systems, Applications and Services, Uppsala, 19–22 June 2006. New York: Association for Computing Machinery, pp. 28–41.

    Google Scholar 

  • He, H. S., Mladenoff, D. J., & Gustafson, E. J. (2002). Study of landscape change under forest harvesting and climate warming-induced fire disturbance. Forest Ecology and Management, 155(1–3), 257–270.

    Article  Google Scholar 

  • Hefeeda, M., & Bagheri, M. (2009). Forest fire modeling and early detection using wireless sensor networks. Ad Hoc and Sensor Wireless Networks, 7, 169–224.

    Google Scholar 

  • Hessburg, P. (2017, April 24). Era of mega-fires: How do you want your fire? How do you want your smoke? Multi-media event presentation sponsored by NRFIRESCIENCE.ORG. Missoula: University of Montana.

    Google Scholar 

  • Hey, A. J. (Ed.). (2009). The fourth paradigm: Data-intensive scientific discovery (Vol. 1). Redmond WA: Microsoft Research.

    Google Scholar 

  • Hiers, J. K., O’Brien, J. J., Varner, J. M., Butler, B. W., Dickinson, M., Furman, J., Gallagher, M., Godwin, D., Goodrick, S. L., Hood, S. M., Hudak, A., Kobziar, L. N., Linn, R., Loudermilk, E. L., McCaffrey, S., Robertson, K., Rowell, E. M., Skowronski, N., Watts, A. C., & Yedinak, K. M. (2020). Prescribed fire science: The case for a refined research agenda. Fire Ecology, 16(1), 1–15.

    Article  Google Scholar 

  • Hoffman, C., Morgan, P., Mell, W., Parsons, R., Strand, E. K., & Cook, S. (2012). Numerical simulation of crown fire hazard immediately after bark beetle-caused mortality in lodgepole pine forests. Forest Science, 58(2), 178–188.

    Article  Google Scholar 

  • Hoffman, C. M., Sieg, C. H., Linn, R. R., Mell, W., Parsons, R. A., Ziegler, J. P., & Hiers, J. K. (2018). Advancing the science of wildland fire dynamics using process-based models. Fire, 1(2), 32.

    Article  Google Scholar 

  • Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J. W., Warren, D. A., Parsons, R., & Affleck, D. (2018). Decreasing fire season precipitation increased recent western US forest wildfire activity. Proceedings of the National Academy of Sciences, 115(36), e8349–e8357. https://doi.org/10.1073/pnas.1802316115.

    Article  Google Scholar 

  • Huffman, M. (2014). Making a world of difference in fire and climate change. Fire Ecology, 10(3), 90–101.

    Article  Google Scholar 

  • Hurteau, M. D., Liang, S., Westerling, A. L., & Wiedinmyer, C. (2019). Vegetation-fire feedback reduces projected area burned under climate change. Scientific Reports, 9(1), 2838. https://doi.org/10.1038/s41598-019-39,284-1.

    Article  Google Scholar 

  • Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). Structure from motion photogrammetry in forestry: A review. Current Forestry Reports, 5(3), 155–168.

    Article  Google Scholar 

  • Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., & Bowman, D. M. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6, 7536. https://doi.org/10.1038/ncomms8537.

    Article  Google Scholar 

  • Keane, R. E., Gray, K., Davis, B., Holsinger, L. M., & Loehman, R. (2019). Evaluating ecological resilience across wildfire suppression levels under climate and fuel treatment scenarios using landscape simulation modeling. International Journal of Wildland Fire, 28(7), 533–549.

    Article  Google Scholar 

  • Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., & Dong, N. (2019). How contemporary bioclimatic and human controls change global fire regimes. Nature Climate Change, 9(9), 690–696.

    Article  Google Scholar 

  • Kemp, K. B., Blades, J. J., Klos, P. Z., Hall, T. E., Force, J. E., Morgan, P., & Tinkham, W. T. (2015). Managing for climate change on federal lands of the western United States: Perceived usefulness of climate science, effectiveness of adaptation strategies, and barriers to implementation. Ecology and Society, 20(2). https://doi.org/10.5751/ES-07522-200,217.

  • Kobziar, L. N., Rocca, M. E., Dicus, C. A., Hoffman, C., Sugihara, N., Thode, A. E., Varner, J. M., & Morgan, P. (2009). Challenges to educating the next generation of wildland fire professionals in the United States. Journal of Forestry, 107(7), 339–345.

    Google Scholar 

  • Knapp, C. N., Reid, R. S., Fernández-Giménez, M. E., Klein, J. A., & Galvin, K. A. (2019). Placing transdisciplinarity in context: A review of approaches to connect scholars, society and action. Sustainability, 11(18), 4899.

    Article  Google Scholar 

  • Knorr, W., Kaminski, T., Arneth, A., & Weber, U. (2014). Impact of human population density on fire frequency at the global scale. Biogeosciences, 11(4), 1085–1102.

    Article  Google Scholar 

  • Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J., & Hayhoe, K. (2009). Global pyrogeography: The current and future distribution of wildfire. PLoS One, 4(4), e5102. https://doi.org/10.1371/journal.pone.0005102.

    Article  Google Scholar 

  • LaDeau, S. L., Han, B. A., Rosi-Marshall, E. J., & Weathers, K. C. (2017). The next decade of big data in ecosystem science. Ecosystems, 20(2), 274–283.

    Article  Google Scholar 

  • Lannom, K. O., Tinkham, W. T., Smith, A. M., Abatzoglou, J., Newingham, B. A., Hall, T. E., Morgan, P., Strand, E. K., Paveglio, T. B., Anderson, J. W., & Sparks, A. M. (2014). Defining extreme wildland fires using geospatial and ancillary metrics. International Journal of Wildland Fire, 23(3), 322–337.

    Article  Google Scholar 

  • Lawrence, R. J., & Despres, C. (2004). Futures of transdisciplinarity. Futures, 36, 397–405.

    Article  Google Scholar 

  • Leberi, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., & Wiechert, A. (2010). Point clouds: LiDAR versus three-dimensional vision. Photogrammetric Engineering & Remote Sensing, 76, 1123–1134.

    Article  Google Scholar 

  • Lefsky, M. A., Cohen, W. B., Acker, S. A., Parker, G. G., Spies, T. A., & Harding, D. (1999). Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment, 70(3), 339–361.

    Article  Google Scholar 

  • Lenhard, J. (2007). Computer simulation: The cooperation between experimenting and modeling. Philosophy in Science, 74, 176–194.

    Article  Google Scholar 

  • Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). LiDAR remote sensing of forest structure. Progress in Physical Geography, 27(1), 88–106.

    Article  Google Scholar 

  • Lin, Z., Liu, H. T., & Wotton, M. (2018). Kalman filter-based large-scale wildfire monitoring with a system of UAVs. IEEE Transactions on Industrial Electronics, 66(1), 606–615.

    Article  Google Scholar 

  • Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensor Nodes, 9(11), 8722–8747.

    Article  Google Scholar 

  • Loehman, R. A., Keane, R. E., & Holsinger, L. M. (2020). Simulation modeling of complex climate, wildfire, and vegetation dynamics to address wicked problems in land management. Frontiers in Forest and Global Change. https://doi.org/10.3389/ffgc.2020.00003.

  • Loudermilk, E. L., Hiers, J. K., O’Brien, J. J., Mitchell, R. J., Singhania, A., Fernandez, J. C., Cropper, W. P., & Slatton, K. C. (2009). Ground-based LIDAR: A novel approach to quantify fine-scale fuelbed characteristics. International Journal of Wildland Fire, 18(6), 6.

    Article  Google Scholar 

  • Lovell, J. L., Jupp, D. L., Culvenor, D. S., & Coops, N. C. (2003). Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Canadian Journal of Remote Sensing, 29(5), 607–622.

    Article  Google Scholar 

  • Martín-Alcón, S., & Coll, L. (2016). Unraveling the relative importance of factors driving post-fire regeneration trajectories in non-serotinous Pinus nigra forests. Forest Ecology and Management, 361, 13–22.

    Article  Google Scholar 

  • McCarthy, M. A. (2007). Bayesian methods for ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • McDonald, P. (2012). Workplace sexual harassment 30 years on: A review of the literature. International Journal of Management Reviews, 14, 1. https://doi.org/10.1111/j.1468-2370.2011.00300.x.

    Article  Google Scholar 

  • McKenna, P., Erskine, P. D., Lechner, A. M., & Phinn, S. (2017). Measuring fire severity using UAV imagery in semi-arid central Queensland, Australia. International Journal of Remote Sensing, 38(14), 4244–4264.

    Article  Google Scholar 

  • McLaughlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., & Balch, J. K. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology. https://doi.org/10.1111/1365-2745.13403.

  • Merino, L., Caballero, F., Martínez-de Dios, J. R., Ferruz, J., & Ollero, A. (2006). A cooperative perception system for multiple UAVs: Application to automatic detection of forest fires. Journal of Field Robotics, 23(3–4), 165–184.

    Article  Google Scholar 

  • Merino, L., Caballero, F., Martínez-de-Dios, J. R., Maza, I., & Ollero, A. (2012). An unmanned aircraft system for automatic forest fire monitoring and measurement. Journal of Intelligent & Robotic Systems, 65(1), 533–548.

    Google Scholar 

  • Merwaday, A., & Guvenc, I. (2015). UAV assisted heterogeneous networks for public safety communications. In: Proceedings of 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), pp. 329–334.

    Google Scholar 

  • Montiel C, Kraus D (Eds). (2010). Best practices of fire use – Prescribed burning and suppression fire programmes in selected case-study regions in Europe. European Forest Institute EFI Research Report 24, Joensuu.

    Google Scholar 

  • Montiel, C., Karlsson, O., & Galiana, L. (2019). Regional fire scenarios in Spain: Linking landscape dynamics and fire regime for wildfire risk management. Journal of Environmental Management, 233, 427–439.

    Article  Google Scholar 

  • Moran, C. J., Seielstad, C. A., Cunningham, M. R., Hoff, V., Parsons, R. A., Queen, L., Sauerbrey, K., & Wallace, T. (2019). Deriving fire behavior metrics from UAS imagery. Fire, 2(2), 36.

    Article  Google Scholar 

  • Morgan, G. W., Tolhurst, K. G., Poynter, M. W., Cooper, N., McGuffog, T., Ryan, R., Wouters, M. A., Stephens, N., Black, P., Sheehan, D., & Leeson, P. (2020). Prescribed burning in south-eastern Australia: History and future directions. Australian Forestry, 83(1), 4–28. https://doi.org/10.1080/00049158.2020.1739883.

    Article  Google Scholar 

  • Moritz, M. A., Topik, C., Allen, C. D., Hessburg, P. F., Morgan, P., Odion, D. C., Veblen, T. T., & McCullough, I. M. (2018) A statement of common ground regarding the role of wildfire in forested landscapes of the western United States. Fire Research Consensus Working Group Final Report. SNAPP and NCEAS. Retrieved January 15, 2020, from https://www.nceas.ucsb.edu/files/research/projects/WildfireCommonGround.pdf.

  • National Academies of Sciences, Engineering, and Medicine (NAS). (2018). Thriving on our changing planet: A decadal strategy for Earth observation from space. Washington, DC: National Academies Press. https://doi.org/10.17226/24938.

    Book  Google Scholar 

  • The Nature Conservancy (TNC). (2017). Strong voices, active choices: TNC’s practitioner framework to strengthen outcomes for people and nature. Arlington: The Nature Conservancy. Retrieved March 29, 2020, from https://www.nature.org/en-us/what-we-do/our-insights/perspectives/strong-voices-active-choices/.

    Google Scholar 

  • The Nature Conservancy (TNC). (2018). Prescribed fire training exchanges. Retrieved April 11, 2020, from https://www.conservationgateway.org/ConservationPractices/FireLandscapes/HabitatProtectionandRestoration/Training/TrainingExchanges/Pages/fire-training-exchanges.aspx.

  • Newnham, G. J., Armston, J. D., Calders, K., Disney, M. I., Lovell, J. L., Schaaf, C. B., Strahler, A. H., & Danson, F. M. (2015). Terrestrial laser scanning for plot-scale forest measurement. Current Forestry Report, 1(4), 239–251.

    Article  Google Scholar 

  • Olden, J. D., Lawler, J. J., & Poff, N. L. (2008). Machine learning methods without tears: A primer for ecologists. The Quarterly Review of Biology, 83(2), 171–193.

    Article  Google Scholar 

  • Parsons, R., Linn, R., Pimont, F., Hoffman, C., Sauer, J., Winterkamp, J., & Jolly, W. (2017). Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior. Land, 6(2), 43.

    Article  Google Scholar 

  • Pausas, J. G., & Keeley, J. E. (2019). Wildfires as an ecosystem service. Frontiers in Ecology and the Environment, 17(5), 289–295. https://doi.org/10.1002/fee.2044.

    Article  Google Scholar 

  • Peck, S. L. (2004). Simulation as experiment: A philosophical reassessment for biological modeling. Trends in Ecology & Evolution, 19, 530–534.

    Article  Google Scholar 

  • Porter, J., Arzberger, P., Braun, H.-W., Bryant, P., Gage, S., Hansen, T., Hanson, P., Lin, C.-C., Lin, F.-P., Kratz, T., Michener, W., Shapiro, S., & Williams, T. (2005). Wireless sensor networks for ecology. BioSciences, 55(7), 561–572. https://doi.org/10.1641/0006-3568(2005)055[0561:WSNFE]2.0.CO;2.

    Article  Google Scholar 

  • Pyne, S. J. (2015). How humans made fire, and fire made us human. AEON. Retrieved April 20, 2020, from https://aeon.co/essays/how-humans-made-fire-and-fire-made-us-human.

  • Pyne, S. J. (2018). Big fire; or introducing the pyrocene. Fire, 1(1), 1. https://doi.org/10.3390/fire1010001.

    Article  Google Scholar 

  • PyroLife Project. (2019). PyroLife project. Retrieved June 19, 2020, from https://pyrolife.lessonsonfire.eu/pyrolife-project/.

  • Rego, F., Rigolot, E., Fernandes, P., Montiel, C., & Sande Silva, J. (2010). Towards integrated fire management. European Forest Institute EFI Policy Brief 4, Joensuu.

    Google Scholar 

  • Rego, F. C., Moreno, J. M., Vallejo, V. R., & Xanthopoulos. (2018). Forest fires. Sparking firesmart policies in the EU. In N. Faivre (Ed.), Research & innovation projects for policy. Climate action and resource efficiency. Brussels: European Commission.

    Google Scholar 

  • Roberts, S. D., Dean, T. J., Evans, D. L., McCombs, J. W., Harrington, R. L., & Glass, P. A. (2005). Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions. Forest Ecology and Management, 213(1–3), 54–70.

    Article  Google Scholar 

  • Rowell, E., & Seielstad, C. (2012). Characterizing grass, litter, and shrub fuels in longleaf pine forest pre-and post-fire using terrestrial LiDAR. In: Proceedings of 12th international SilviLaser, Vancouver, 16–19 September, pp. 16–19.

    Google Scholar 

  • Rowell, E., Loudermilk, E. L., Seielstad, C., & O’Brien, J. J. (2016). Using simulated 3D surface fuelbeds and terrestrial laser scan data to develop inputs to fire behavior models. Canadian Journal of Remote Sensing, 42(5), 443–459.

    Article  Google Scholar 

  • Rover, B. (2020). Wildfires and the pandemic – What’s ahead. International Association of Wildland Fire. Retrieved June 5, 2020, from https://www.iawfonline.org/article/2020-04-wildfires-pandemic-whats-ahead-wfca/.

  • Salgueiro, A. (2010). The Portuguese National Programme on Suppression Fire: GAUF Team Actions. In: C. Montiel, D. Kraus (Eds.), Best practices of fire use – Prescribed burning and suppression fire programmes in selected case-study regions in Europe. European Forest Institute EFI Research Report 24, Joensuu, pp. 123–136.

    Google Scholar 

  • Samiappan, S., Hathcock, L., Turnage, G., McCraine, C., Pitchford, J., & Moorhead, R. (2019). Remote sensing of wildfire using a small unmanned aerial system: Post-Fire mapping, vegetation recovery and damage analysis in Grand Bay, Mississippi/Alabama, USA. Drones, 3(2), 43.

    Article  Google Scholar 

  • Sanderson, B. M., & Fisher, R. A. (2020). A fiery wake-up call for climate science. Nature Climate Change, 10(3), 175–177. https://doi.org/10.1038/s41558-020-0707-2.

    Article  Google Scholar 

  • Seamon, G. (2019). FlameWorks. Tall Timbers. Retrieved June 19, 2020, from https://resilience-blog.com/wp-content/uploads/2019/11/FlameWork_eJournal_Falll2019_pp42-46.pdf.

  • Sequeira, C. R., Rego, F., Montiel-Molina, C., & Morgan, P. (2019). Half-century changes in LULC and fire in two Iberian inner mountain areas. Fire, 2(3), 45. https://doi.org/10.3390/fire2030044.

    Article  Google Scholar 

  • Scholz, R. W., & Steiner, G. (2015). The real type and ideal type of transdisciplinary processes: Part I—theoretical foundations. Sustainability Science, 10, 527–544.

    Article  Google Scholar 

  • Schwartz, M. W., Hiers, J. K., Davis, F. W., Garfin, G. M., Jackson, S. T., Terando, A. J., Woodhouse, C. A., Morelli, T. L., Williamson, M. A., & Brunson, M. W. (2017). Developing a translational ecology workforce. Frontiers in Ecology and the Environment, 15(10), 587–596.

    Article  Google Scholar 

  • Schultz, C. A., & Moseley, C. (2019). Collaborations and capacities to transform fire management. Science, 366(6461), 38–40.

    Article  Google Scholar 

  • Shin, P., Sankey, T., Moore, M., & Thode, A. (2018). Evaluating unmanned aerial vehicle images for estimating forest canopy fuels in a ponderosa pine stand. Remote Sensing, 10(8), 1266.

    Article  Google Scholar 

  • Sieg, C. H., Linn, R. R., Pimont, F., Hoffman, C. M., McMillin, J. D., Winterkamp, J., & Baggett, L. S. (2017). Fires following bark beetles: Factors controlling severity and disturbance interactions in ponderosa pine. Fire Ecology, 13(3), 1–23.

    Article  Google Scholar 

  • Sil, A., Azevedo, J., Fernandes, P. M., Regos, A., Vaz, A. S., & Honrado, J. (2019). (Wild)fire is not an ecosystem service. Frontiers in Ecology and the Environment, 17(8), 429–430.

    Article  Google Scholar 

  • Smith, A., Goldammer, J. G., & Bowman, D. M. (2018a). Introducing Fire: A transdisciplinary journal to advance understanding and management of landscape fires from local to global scales in the past, present, and future. Fire, 1(1), 2. https://doi.org/10.3390/fire1010002.

    Article  Google Scholar 

  • Smith, A. M. S., & Strand, E. K. (2018). Recognizing women leaders in fire science: Revisited. Fire, 1, 45. https://doi.org/10.3390/fire1030045.

    Article  Google Scholar 

  • Smith, A. M. S., Kolden, C. A., Prichard, S. J., Gray, R. W., Hessburg, P. F., & Balch, J. K. (2018b). Recognizing women leaders in fire science. Fire, 1, 30.

    Article  Google Scholar 

  • Son, B. (2006). A design and implementation of forest-fires surveillance system based on wireless sensor networks for South Korea mountains. International Journal of Computer Science and Network Security, 6(9B), 124–130.

    Google Scholar 

  • Stamper, A. (2017). Women on fire, lighting up a new path. International Association of Wildland Fire. Retrieved April 20, 2020, from https://www.iawfonline.org/article/women-on-fire-lighting-up-a-new-path/.

  • Stenzel, J. E., Bartowitz, K. J., Hartman, M. D., Lutz, J. A., Kolden, C. A., Smith, A. M., Law, B. E., Swanson, M. E., Larson, A. J., Parton, W. J., & Hudiburg, T. W. (2019). Fixing a snag in carbon emissions estimates from wildfires. Global Change Biology, 25(11), 3985–3994.

    Article  Google Scholar 

  • Stevens-Rumann, C. S., & Morgan, P. (2019). Tree regeneration following wildfires in the western US: A review. Fire Ecology, 15(1), 15.

    Article  Google Scholar 

  • Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252.

    Article  Google Scholar 

  • Turco, M., Bedia, J., Liberto, F. D., Fiorucci, P., von Hardenberg, J., Koutsias, N., Llasat, M.-C., Xystrakis, F., & Provenzale, A. (2016). Decreasing fires in Mediterranean Europe. PLoS One, 11(3), e0150663. https://doi.org/10.1371/journal.pone.0150663.

    Article  Google Scholar 

  • Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735.

    Article  Google Scholar 

  • Warner, T. A., Skowronski, N. S., & Gallagher, M. R. (2017). High spatial resolution burn severity mapping of the New Jersey Pine Barrens with WorldView-3 near-infrared and shortwave infrared imagery. International Journal of Remote Sensing, 38(2), 598–616. https://doi.org/10.1080/01431161.2016.1268739.

    Article  Google Scholar 

  • Wells, G. (2011). Preparing tomorrow’s fire professionals: Integration of education, training, and experience through science-management partnerships. Fire Science Digest, 9. USDI and USDO Joint Fire Science Program, Boise. Retrieved December 13, 2019, from https://www.firescience.gov/Digest/FSdigest9.pdf.

  • Williams, A. P., & Abatzoglou, J. T. (2016). Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Current Climatic Change Reports, 2(1), 1–14. https://doi.org/10.1007/s40641-016-0031-0.

    Article  Google Scholar 

  • Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J., Bishop, D. A., Balch, J. K., & Lettenmaier, D. P. (2019). Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future, 7(8), 892–910. https://doi.org/10.1029/2019EF001210.

    Article  Google Scholar 

  • Winsberg, E. (2001). Simulations, models, and theories: Complex physical systems and their representations. Philosophy in Science, 68, S442–S454.

    Article  Google Scholar 

  • Winsberg, E. (2003). Simulated experiments: Methodology for a virtual world. Philosophy in Science, 70, 105–125.

    Article  Google Scholar 

  • Wulder, M. A., Bater, C. W., Coops, N. C., Hilker, T., & White, J. C. (2008). The role of LiDAR in sustainable forest management. The Forestry Chronicle, 84(6), 807–826.

    Article  Google Scholar 

  • Ziegler, J. P., Hoffman, C., Battaglia, M., & Mell, W. (2017). Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests. Forest Ecology and Management, 386, 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro Rego, F., Morgan, P., Fernandes, P., Hoffman, C. (2021). Futuring: Trends in Fire Science and Management. In: Fire Science. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-69815-7_14

Download citation

Publish with us

Policies and ethics