Skip to main content

Fire Regimes, Landscape Dynamics, and Landscape Management

  • Chapter
  • First Online:
Fire Science

Abstract

Fire history can inform science and management of landscapes now and in a future of rapid change. In this chapter to our book, Fire science from chemistry to landscape management, we build on the understanding of fire occurrence and effects from previous chapters, starting with temporal dynamics at points, and then expanding over scales in space and time to landscapes. Readers learn the potential, uncertainty, and limitations of the different data sources used to describe recurring fires as part of past, present, and future fire regimes. The local fire effects from single fires vary within patches and across landscapes, and the resulting spatial variability over time and space influence ecosystem response to each fire. In turn, these influence how subsequent fires will burn and landscape dynamics, reflecting the legacy through multiple fires. Using clear examples from around the globe, we discuss current issues such as the relative importance of climate and fuels in influencing fire occurrence and area burned and the ecological effects of fires (i.e., burn severity). We address the implications of changing climate and other aspects of global change as they influence fires. Fires are often agents of change. We conclude that the ways in which climate, vegetation, and people drove historical fire regimes may hold important lessons for understanding what makes ecosystems resilient and managing them to adapt for the future. Thus, we link fire effects on landscapes to landscape management in forests, grasslands, shrublands, and other vegetation types worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzoglou, J. T., & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. PNAS, 113, 11770–11775. https://doi.org/10.1073/pnas.1607171113.

    Article  Google Scholar 

  • Abatzoglou, J. T., Kolden, C. A., Balch, J. K., & Bradley, B. A. (2016). Controls on interannual variability in lightning-caused fire activity in the western US. Environmental Research Letters, 11(4), 045005. https://doi.org/10.1088/1748-9326/11/4/045005/meta.

    Article  Google Scholar 

  • Abbott, I., VanHeurck, P., & Burbidge, T. (1993). Ecology of the pest ins jarrah leaf miner (Lepidoptera) in relation to fire and timber harvesting in Jarrah Forest in western Australia. Australian Forestry, 56, 264–275.

    Article  Google Scholar 

  • Abella, S. R., Covington, W. W., Fulé, P. Z., Lentile, L. B., Sanchez Meador, A. J., & Morgan, P. (2007). Past, present, and future old growth in frequent-fire conifer forests of the western United States. Ecology and Society, 12(2), 1.

    Article  Google Scholar 

  • Agee, J. K. (1993). Fire ecology of Pacific Northwest forests. Washington, DC: Island Press.

    Google Scholar 

  • Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. T., & Gonzalez, P. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.

    Article  Google Scholar 

  • Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., & Bachelet, D. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362.

    Article  Google Scholar 

  • Anderegg, W. R. L., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., Hood, S., Lichstein, J. W., Macalady, A. K., McDowell, N., & Pan, Y. (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208, 674–683. https://doi.org/10.1111/nph.13477.

    Article  Google Scholar 

  • Aplet, G. H., & Cole, D. N. (2010). The trouble with naturalness: Rethinking park and wilderness goals. Beyond naturalness: rethinking park and wilderness stewardship in an era of rapid change, 12, 21–22. Island Press, Washington, DC

    Google Scholar 

  • Archibald, S., Nickless, A., Govender, N., Scholes, R. J., & Lehsten, V. (2010). Climate and the inter-annual variability of fire in southern Africa: A meta-analysis using long-term field data and satellite-derived burnt area data. Global Ecology and Biogeography, 19(6), 794–809.

    Article  Google Scholar 

  • Archibald, S., Lehmann, C. E., Gómez-Dans, J. L., & Bradstock, R. A. (2013). Defining pyromes and global syndromes of fire regimes. Proceedings of the Natinal Academy of Sciences, 110(16), 6442–6447.

    Article  Google Scholar 

  • Balch, J. K., Bradley, B. A., Abatzoglou, J. T., Nagy, R. C., Fusco, E. J., & Mahood, A. L. (2017). Human-started wildfires expand the fire niche across the United States. PNAS, 114(11), 2946–2951. https://doi.org/10.1073/pnas.1617394114.

    Article  Google Scholar 

  • Birch, D. S., Morgan, P., Kolden, C. A., Hudak, A. T., & Smith, A. M. S. (2014). Is proportion burned severely related to daily area burned. Environmental Research Letters, 9, 064011. https://doi.org/10.1088/1748-9326/9/6/064011\.

    Article  Google Scholar 

  • Birch, D. S., Morgan, P., Kolden, C. A., Abatzoglou, J. T., Dillon, G. K., Hudak, A. T., & Smith, A. M. S. (2015). Daily weather and other factors influencing burn severity in central Idaho and western Montana, 2005-2007 and 2011. Ecosphere, 6(1), 17. https://doi.org/10.1890/ES14-00213.1.

    Article  Google Scholar 

  • Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., & Kull, C. A. (2011). The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), 2223–2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x.

    Article  Google Scholar 

  • Bowman, D. M. J. S., MacDermott, H. J., Nichols, S. C., & Murphy, B. P. (2014). A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecology and Evolution, 4(21), 4185–4194.

    Article  Google Scholar 

  • Bowman, D. M. J. S., Williamson, G., Kolden, C. A., Abatzoglou, J. T., Cochrane, M. A., & Smith, A. M. S. (2017). Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution, 1(3), 1–6. https://doi.org/10.1038/s41559-016-0058.

    Article  Google Scholar 

  • Bradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158.

    Article  Google Scholar 

  • Brooks, M. L., D’Antonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., DiTomaso, J. M., Hobbs, R. J., Pellant, M., & Pyke, D. (2004). Effects of invasive alien plants on fire regimes. BioScience, 54(7), 677–688.

    Article  Google Scholar 

  • Brunelle, A., Whitlock, C., Bartlein, P., & Kipfmueller, K. (2005). Holocene fire and vegetation along environmental gradients in the Northern Rocky Mountains. Quaternary Science Reviews, 24(20), 2281–2300.

    Article  Google Scholar 

  • Bunting, S. C., Strand, E. K., & Kingery, J. L. (2007). Landscape characteristics of sagebrush-steppe/juniper woodland mosaics under various modeled prescribed fire regimes. Proceedings of Timbers Fire Ecology Conference, 23, 50–57.

    Google Scholar 

  • Bureau of Land Management (BLM). (n.d.) General Land Office records. Retrieved March 25, 2019, from https://glorecords.blm.gov/search/default.aspx?searchTabIndex=0&searchByTypeIndex=1.

  • Burkhardt, J. W., & Tisdale, E. W. (1976). Causes of juniper invasion in southwestern Idaho. Ecology, 57, 472–484.

    Article  Google Scholar 

  • Chen, D., Pereira, J. M., Masiero, A., & Pirotti, F. (2017). Mapping fire regimes in China using MODIS active fire and burned area data. Applied Geography, 85, 14–26.

    Article  Google Scholar 

  • Churchill, D. J., Larson, A. J., Dahlgreen, M. C., Franklin, J. F., Hessburg, P. F., & Lutz, J. A. (2013). Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring. Forest Ecology and Management, 291, 442–457.

    Article  Google Scholar 

  • Coates, P. S., Ricca, M. A., Prochazka, B. G., Brooks, M. L., Doherty, K. E., Kroger, T., Blomberg, E. J., Hagen, C. A., & Casazza, M. L. (2016). Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems. PNAS, 113(45), 12745–12750.

    Article  Google Scholar 

  • D’Antonio, C. M., & Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecological Systems, 23(1), 63–87.

    Article  Google Scholar 

  • Davis, K. T., Higuera, P. E., & Sala, A. (2018). Anticipating fire-mediated impacts of climate change using a demographic framework. Functional Ecology, 32(7), 1729–1745.

    Article  Google Scholar 

  • Davis, K. T., Dobrowski, S. Z., Higuera, P. E., Holden, Z. A., Veblen, T. T., Rother, M. T., Parks, S. A., Sala, A., & Maneta, M. P. (2019). Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. PNAS, 116(13), 6193–6198.

    Article  Google Scholar 

  • DellaSala, D. A., & Hanson, C. T. (2015). Ecological and biodiversity benefits of megafires. In D. A. DellaSala & C. T. Hanson (Eds.), The ecological importance of mixed-severity fires (pp. 23–54). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Dennison, P. E., Brewer, S. C., Arnold, J. D., & Moritz, M. A. (2014). Large wildfire trends in the western United States, 1984–2011. Geophysical Research Letters, 41(8), 2928–2933.

    Article  Google Scholar 

  • Dillon, G. K., Holden, Z. A., Morgan, P., Crimmins, M. A., Heyerdahl, E. K., & Luce, C. H. (2011). Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere, 2(12), 130. https://doi.org/10.1890/ES11-00271.1.

    Article  Google Scholar 

  • Dillon, G. K., Panunto, M. H., Davis, B., Morgan, P., Birch, D., & Jolly, W. M. (2020). Development of a severe fire potential map for the contiguous United States. RMRS-GTR-415. Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z. L., Quayle, B., & Howard, S. (2007). A project for monitoring trends in burn severity. Fire Ecology, 3(1), 3–21.

    Article  Google Scholar 

  • Engle, K. M., & Kulbeth, J. D. (1992). Growth dynamics of crowns of eastern red cedar at 3 locations in Oklahoma. Journal of Range Management, 45, 301–305.

    Article  Google Scholar 

  • Estes, B. L., Knapp, E. E., Skinner, C. N., Miller, J. D., & Preisler, H. K. (2017). Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere, 8(5), e01794.

    Article  Google Scholar 

  • Falk, D. A., Heyerdahl, E. K., Brown, P. M., Farris, C., Fulé, P. Z., McKenzie, D., Swetnam, T. W., Taylor, A. H., & Van Horne, M. L. (2011). Multi-scale controls of historical forest-fire regimes: New insights from fire-scar networks. Frontiers in Ecology and the Environment, 9(8), 446–454.

    Article  Google Scholar 

  • Fall, J. (1999). An introductory tutorial on common methods for determining fire frequency. Burnaby: Simon Fraser University. Retrieved May 19, 2020, from http://www.rem.sfu.ca/forestry/download/download.htm.

    Google Scholar 

  • Fernandes, P. M. (2019). Variation in the Canadian Fire Weather Index thresholds for increasingly larger fires in Portugal. Forests, 10, 838. https://doi.org/10.3390/f10100838.

    Article  Google Scholar 

  • Fernandes, P., Loureiro, C., Magalhães, M., & Fernandes, M. (2012). Fuel age, weather and burn probability in Portugal. International Journal of Wildland Fire, 21, 380–384.

    Article  Google Scholar 

  • Fernandes, P. M., Loureiro, C., Guiomar, N., Pezzatti, G. B., Manso, F., & Lopes. (2014). The dynamics and drivers of fuel and fire in the Portuguese public forest. Journal of Environmental Management, 146, 373–382. https://doi.org/10.1016/j.jenvman.2014.07.049.

    Article  Google Scholar 

  • Fernandes, P. M., Monteiro-Henriques, T., Guiomar, N., Loureiro, C., & Barros, A. (2016a). Bottom-up variables govern large-fire size in Portugal. Ecosystems, 19, 1362–1375. https://doi.org/10.1007/s10021-016-0010-2.

    Article  Google Scholar 

  • Fernandes, P. M., Pacheco, A. P., Almeida, R., & Claro, J. (2016b). The role of fire suppression force in limiting the spread of extremely large forest fires in Portugal. European Journal of Forest Research, 135, 253–262.

    Article  Google Scholar 

  • Finco, M., Quayle, B., Zhang, Y., Lecker, J., Megown, K. A., & Brewer, C. K. (2012). Monitoring trends and burn severity (MTBS): Monitoring wildfire activity for the past quarter century using Landsat data. In: RS Morin, GC Liknes (comps.), Moving from status to trends: Forest Inventory and Analysis (FIA) symposium 2012. Gen Tech Rep NRS-P-105 (pp. 222–228). Newton Square: USDA Forest Service Northern Research Station.

    Google Scholar 

  • Finney, M. A. (1995). The missing tail and other considerations for the use of fire history models. International Journal of Wildland Fire, 5(4), 197–202.

    Article  Google Scholar 

  • Finney, M. A., Seli, R. C., McHugh, C. W., Ager, A. A., Bahro, B., & Agee, J. K. (2008). Simulation of long-term landscape-level fuel treatment effects on large wildfires. International Journal of Wildland Fire, 16(6), 712–727.

    Article  Google Scholar 

  • Flatley, W. T., & Fulé, P. Z. (2016). Are historical fire regimes compatible with future climate? Implications for forest restoration. Ecosphere, 7(10), e01471.

    Article  Google Scholar 

  • Flower, A., Gavin, D. G., Heyerdahl, E. K., Parsons, R. A., & Cohn, G. M. (2014). Western spruce budworm outbreaks did not increase fire risk over the last three centuries: A dendrochronological analysis of inter-disturbance synergism. PLoS One, 9(12), e114282.

    Article  Google Scholar 

  • Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., & Li, F. (2017). Emergent relationships on burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 16, 57–76.

    Article  Google Scholar 

  • Fuhlendorf, S. D., & Engle, D. M. (2001). Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns: We propose a paradigm that enhances heterogeneity instead of homogeneity to promote biological diversity and wildlife habitat on rangelands grazed by livestock. BioScience, 51(8), 625–632.

    Article  Google Scholar 

  • Fulé, P. Z., Swetnam, T. W., Brown, P. M., Falk, D. A., Peterson, D. L., Allen, C. D., Aplet, G. H., Battaglia, M. A., Binkley, D., Farris, C., & Keane, R. E. (2014). Unsupported inferences of high-severity fire in historical dry forests of the western United States: Response to Williams and Baker. Global Ecology and Biogeography, 23(7), 825–830.

    Article  Google Scholar 

  • Gardner, R. H., Milne, B. T., Turner, M. G., & O’Neill, R. V. (1987). Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology, 1, 19–28.

    Article  Google Scholar 

  • Hagmann, R. K., Franklin, J. F., & Johnson, K. N. (2013). Historical structure and composition of ponderosa pine and mixed-conifer forests in south-central Oregon. Forest Ecology and Management, 304, 492–504.

    Article  Google Scholar 

  • Haire, S. L., & McGarigal, K. (2009). Changes in fire severity across gradients of climate, fire size, and topography: A landscape ecological perspective. Fire Ecology, 5, 86–103.

    Article  Google Scholar 

  • Haire, S. L., McGarigal, K., & Miller, C. (2013). Wilderness shapes contemporary fire size distributions across landscapes of the western United States. Ecosphere, 4, art15.

    Article  Google Scholar 

  • Hantson, S., Pueyo, S., & Chuvieco, E. (2015). Global fire size distribution is driven by human impact and climate. Global Ecology and Biogeography, 24(1), 77–86.

    Article  Google Scholar 

  • Harari, Y. N. (2017). Homo Deus: A brief history of tomorrow. New York: Random House.

    Book  Google Scholar 

  • Harley, G., Baisan, C., Brown, P., Falk, D., Flatley, W., Grissino-Mayer, H., Hessl, A., Heyerdahl, E., Kaye, M., Lafon, C., & Margolis, E. (2018). Advancing dendrochronological studies of fire in the United States. Fire, 1(1), 11. https://doi.org/10.3390/fire1010011.

    Article  Google Scholar 

  • Haugo, R., Zanger, C., DeMeo, T., Ringo, C., Shlisky, A., Blankenship, K., Simpson, M., Mellen-McLean, K., Kertis, J., & Stern, M. (2015). A new approach to evaluate forest structure restoration needs across Oregon and Washington, USA. Forest Ecology and Management, 335, 37–50.

    Google Scholar 

  • Haugo, R. D., Kellogg, B. S., Cansler, C. A., Kolden, C. A., Kemp, K. B., Robertson, J. C., Metlen, K. L., Vaillant, N. M., & Restaino, C. M. (2019). The missing fire: Quantifying human exclusion of wildfire in Pacific Northwest forests, USA. Ecosphere, 10(4), e02702.

    Article  Google Scholar 

  • Heinselman, M. L. (1973). Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Research, 3(3), 329–382.

    Article  Google Scholar 

  • Hessburg, P. F., Smith, B. G., Salter, R. B., Ottmar, R. D., & Alvarado, E. (2000). Recent changes (1930s-1990s) in spatial patterns of interior northwest forests, USA. Forest Ecology and Management, 136, 53–83.

    Article  Google Scholar 

  • Hessburg, P., Salter, R., & James, K. (2007). Re-examining fire severity relations in pre-management era mixed conifer forests: Inferences from landscape patterns of forest structure. Landscape Ecology, 22, 5–24.

    Article  Google Scholar 

  • Hessburg, P. F., Larson, A. J., Churchill, D. J., Haugo, R. D., Miller, C., Spies, T. A., North, M. P., Povak, N. A., Belote, R. T., Singleton, P. A., Gaines, W. L., Keane, R. E., Aplet, G. H., Stephens, S. L., Morgan, P., Bisson, P. A., Rieman, B. E., Salter, R. B., & Reeves, G. H. (2015). Restoring fire-prone forest landscapes: Seven core principles. Landscape Ecology, 30(10), 1805–1835. https://doi.org/10.1007/s10980-015-0218-0.

    Article  Google Scholar 

  • Hessburg, P. F., Spies, T. A., Perry, D. A., Skinner, C. N., Taylor, A. H., Brown, P. M., Stephens, S. L., Larson, A. J., Churchill, D. J., Povak, N. A., Singleton, P. H., McComb, B., Zielinski, W. J., Collins, B. M., Salter, R. B., Keane, J. J., Franklin, J. F., & Riegel, G. (2016). Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California. Forest Ecology and Management, 366, 221–250.

    Article  Google Scholar 

  • Heward, H., Smith, A. M., Roy, D. P., Tinkham, W. T., Hoffman, C. M., Morgan, P., & Lannom, K. O. (2013). Is burn severity related to fire intensity? Observations from landscape scale remote sensing. International Journal of Wildland Fire, 22(7), 910–918.

    Article  Google Scholar 

  • Heyerdahl, E. K., Brubaker, L. B., & Agee, J. K. (2001). Spatial controls of historical fire regimes: A multiscale example from the interior west, USA. Ecology, 82(3), 660–678.

    Article  Google Scholar 

  • Heyerdahl, E. K., Brubaker, L. B., & Agee, J. K. (2002). Annual and decadal climate forcing of historical fire regimes in the interior Pacific Northwest, USA. Holocene, 12(5), 597–604.

    Article  Google Scholar 

  • Heyerdahl, E. K., Morgan, P., & Riser II, J. P. (2008a). Crossdated fire histories (1650 to 1900) from ponderosa pine-dominated forests of Idaho and western Montana. Gen Tech Rep RMRS-GTR-214WWW.Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Heyerdahl, E. K., Morgan, P., & Riser, J. P., II. (2008b). Multi-season climate synchronized widespread historical fires in dry forests (1650-1900), Northern Rockies, USA. Ecology, 89(3), 705–716.

    Article  Google Scholar 

  • Heyerdahl, E. K., Loehman, R. A., & Falk, D. A. (2014). Mixed-severity fire in lodgepole pine dominated forests: Are historical regimes sustainable on Oregon’s Pumice Plateau, USA. Canadian Journal of Forest Research, 44(6), 593–603.

    Article  Google Scholar 

  • Hicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012). Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management, 271, 81–90.

    Article  Google Scholar 

  • Hicke, J. A., Meddens, A. J. H., & Kolden, C. A. (2015). Recent tree mortality in the western United States from bark beetles and forest fires. Forest Science, 62(2), 141–153. https://doi.org/10.5849/forsci.15-086.

    Article  Google Scholar 

  • Higuera, P. E., Brubaker, L. B., Anderson, P. M., Hu, F. S., & Brown, T. A. (2009). Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs, 79(2), 201–219.

    Article  Google Scholar 

  • Higuera, P. E., Abatzoglou, J. T., Littell, J. S., & Morgan, P. (2015). The changing strength and nature of fire-climate relationships in the northern Rocky Mountains, USA, 1902-2008. PLoS One, 10(6), e0127563. https://doi.org/10.1371/journal.pone.127563.

    Article  Google Scholar 

  • Holden, Z. A., Morgan, P., Rollins, M. G., & Kavanagh, K. L. (2007). Effects of multiple fires on stand structure in two southwestern wilderness areas, USA. Fire Ecology, 3(2), 18–24.

    Article  Google Scholar 

  • Holsinger, L., Parks, S. A., & Miller, C. (2016). Weather, fuels, and topography impede wildland fire spread in western US landscapes. Forest Ecology and Management, 380, 59–69.

    Article  Google Scholar 

  • Hood, S., Sala, A., Heyerdahl, E. K., & Boutin, M. (2015). Low-severity fire increases tree defense against bark beetle attacks. Ecology, 96(7), 1846–1855.

    Article  Google Scholar 

  • Hu, F. S., Higuera, P. E., Duffy, P., Chipman, M. L., Rocha, A. V., Young, A. M., Kelly, R., & Dietze, M. C. (2015). Arctic tundra fires: Natural variability and responses to climate change. Frontiers in Ecology and the Environment, 13(7), 369–377.

    Article  Google Scholar 

  • Hudak, A. T., Freeborn, P. H., Lewis, S. A., Hood, S. M., Smith, H. Y., Hardy, C. C., Kremens, R. J., Butler, B. W., Teske, C., Tissell, R. G., Queen, L. P., Nordgren, B. L., Bright, B. C., Morgan, P., Riggan, P. J., Macholz, L., Lentile, L. P., Riddering, J. P., & Mathews, E. E. (2018). The Cooney Ridge Fire Experiment: An early operation to relate pre-, active, and post-fire field and remotely sensed measurements. Fire, 1(1), 10. https://doi.org/10.3390/fire1010010.

    Article  Google Scholar 

  • Hurteau, M. D., Liang, S., Westerling, A. L., & Wiedinmyer, C. (2019). Vegetation-fire feedback reduces projected area burned under climate change. Scientific Reports, 9(1), 1–6.

    Article  Google Scholar 

  • Hutto, R. L., Keane, R. E., Sherriff, R. L., Rota, C. T., Eby, L. A., & Saab, V. A. (2016). Toward a more ecologically informed view of severe forest fires. Ecosphere, 7(2), e01255.

    Article  Google Scholar 

  • Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., & Turner, M. G. (2016). Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 14, 369–378. https://doi.org/10.1002/fee.1311.

    Article  Google Scholar 

  • Jolly, W. M., & Freeborn, P. H. (2017). Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin. International Journal of Wildland Fire, 26(7), 574–586.

    Article  Google Scholar 

  • Keane, R. E. (2015). Wildland fuel fundamentals and applications. New York: Springer.

    Book  Google Scholar 

  • Keane, R. E., Cary, G. J., & Parsons, R. (2003). Using simulation to map fire regimes: An evaluation of approaches, strategies, and limitations. International Journal of Wildland Fire, 12(4), 309–322.

    Article  Google Scholar 

  • Keane, R. E., Hessburg, P. F., Landres, P. B., & Swanson, F. J. (2009). The use of historical range and variability (HRV) in landscape management. Forest Ecology and Management, 258(7), 1025–1037.

    Article  Google Scholar 

  • Keane, R. E., Loehman, R. A., & Holsinger, L. M. (2011). The FireBGCv2 landscape fire and succession model: A research simulation platform for exploring fire and vegetation dynamics. Gen Tech Rep RMRS-GTR-255. Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Keane, R. E., McKenzie, D., Falk, D. A., Smithwick, E. A., Miller, C., & Kellogg, L. K. (2015). Representing climate, disturbance, and vegetation interactions in landscape models. Ecological Modelling, 309, 33–47.

    Article  Google Scholar 

  • Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116–126.

    Article  Google Scholar 

  • Keeley, J. E., Brennan, T., & Pfaff, A. H. (2008). Fire severity and ecosystem responses following crown fires in California shrublands. Ecological Applications, 18(6), 1530–1546. https://doi.org/10.1890/07-0836.1.

    Article  Google Scholar 

  • Keeley, J. E., Aplet, G. H., Christensen, N. L., Conard, S. G., Johnson, E. A., Omi, P. N., Peterson, D. L., & Swetnam, T. W. (2009). Ecological foundations for fire management in North American forest and shrubland ecosystems. Gen Tech Rep PNW-GTR-779. Portland: USDA Forest Service Pacific Northwest Research Station.

    Google Scholar 

  • Kemp, K. B., Higuera, P. E., & Morgan, P. (2016). Fire legacies impact conifer regeneration across environmental gradients in the US northern Rockies. Landscape Ecology, 31(3), 619–636.

    Article  Google Scholar 

  • Key, C. H., & Benson, N. C. (2006). Landscape assessment: Sampling and analysis methods. In: DC Lutes, RE Keane, JF Caratti, CH Key, NC Benson, S Sutherland, LJ Gangi (Eds.), FIREMON: Fire effects monitoring and inventory system. Gen Tech Rep RMRS-GTR-164-CD. Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Keyser, A., & Westerling, A. L. (2017). Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States. Environmental Research Letters, 12(6), 065003.

    Article  Google Scholar 

  • Krawchuk, M. A., & Moritz, M. A. (2011). Constraints on global fire activity vary across a resource gradient. Ecology, 92, 121–132.

    Article  Google Scholar 

  • Krawchuk, M. A., Haire, S. L., Coop, J., Parisien, M. A., Whitman, E., Chong, G., & Miller, C. (2016). Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere, 7(12), 1–18.

    Article  Google Scholar 

  • Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M., & Conedera, M. (2010). Fire regime: History and definition of a key concept in disturbance ecology. Theory in Biosciences, 129(1), 53–69.

    Article  Google Scholar 

  • Kremens, R. L., Smith, A. M., & Dickinson, M. B. (2010). Fire metrology: Current and future directions in physics-based measurements. Fire Ecology, 6(1), 13–35.

    Article  Google Scholar 

  • Landfire. (n.d.) Landfire. Fire Regime Maps. Retrieved May 30, 2019, from https://www.landfire.gov/geoareasmaps/2012/CONUS_FRG_c12.jpg.

  • Landres, P. B., Morgan, P., & Swanson, F. J. (1999). Evaluating the utility of natural variability concepts in managing ecological systems. Ecological Applications, 9(4), 1179–1188.

    Google Scholar 

  • Lang, S. (1997). Burning in the bush: A spatio-temporal analysis of Jarrah forest fire regimes. Honours Thesis. Geography, Australian National University, Canberra.

    Google Scholar 

  • Lentile, L. B., Morgan, P., Hardy, C., Hudak, A., Means, R., Ottmar, R., Robichaud, P., Sutherland, E., Szymoniak, J., Way, F., Fites-Kaufman, J., Lewis, S., Mathews, E., Shovic, H., & Ryan, K. (2000). Value and challenges of conducting rapid response research on wildland fires. Gen Tech Rep RMRS-GTR-193. Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Lentile, L. B., Morgan, P., Hudak, A. T., Bobbitt, M. J., Lewis, S. A., Smith, A. M., & Robichaud, P. R. (2007). Post-fire burn severity and vegetation response following eight large wildfires across the western United States. Fire Ecology, 3(1), 91–108.

    Article  Google Scholar 

  • Lewis, S. A., Hudak, A. T., Robichaud, P. R., Morgan, P., Satterberg, K. L., Strand, E. K., Smith, A. M., Zamudio, J. A., & Lentile, L. B. (2017). Indicators of burn severity at extended temporal scales: A decade of ecosystem response in mixed-conifer forests of western Montana. International Journal of Wildland Fire, 26(9), 755–771.

    Article  Google Scholar 

  • Liang, S., Hurteau, M. D., & Westerling, A. L. (2018). Large-scale restoration increases carbon stability under projected climate and wildfire regimes. Frontiers in Ecology and the Environment, 16(4), 207–212.

    Article  Google Scholar 

  • Loehman, R., Flatley, W., Holsinger, L., & Thode, A. (2018). Can land management buffer impacts of climate changes and altered fire regimes on ecosystems of the southwestern United States? Forests, 9(4), 192. https://doi.org/10.3390/f9040192.

    Article  Google Scholar 

  • van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fulé, P. Z., Harmon, M. E., Larson, A. J., Smith, J. M., Taylor, A. H., & Veblen, T. T. (2009). Widespread increase of tree mortality rates in the western United States. Sciences, 323(5913), 521–524.

    Article  Google Scholar 

  • van Mantgem, P. J., Nesmith, J. C., Keifer, M., Knapp, E. E., Flint, A., & Flint, L. (2013). Climatic stress increases forest fire severity across the western United States. Ecology Letters, 16(9), 1151–1156.

    Article  Google Scholar 

  • Marlon, J. R., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S. P., Higuera, P. E., Joos, F., Power, M. J., & Prentice, I. C. (2008). Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience, 1(10), 697. https://doi.org/10.1038/ngeo313.

    Article  Google Scholar 

  • Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K. J., Colombaroli, D., Hallett, D. J., Power, M. J., & Scharf, E. A. (2012). Long-term perspective on wildfires in the western USA. PNAS, 109(9), E535–E543.

    Article  Google Scholar 

  • McGranahan, D. A., Engle, D. M., Miller, J. R., & Debinski, D. M. (2013). An invasive grass increases live fuel proportion and reduces fire spread in a simulated grassland. Ecosystems, 16(1), 158–169.

    Article  Google Scholar 

  • McLaughlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., & Balch, J. K. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology. https://doi.org/10.1111/1365-2745.13403.

  • McWethy, D. B., Higuera, P. E., Whitlock, C., Veblen, T. T., Bowman, D. M. J. S., Cary, G. J., Haberle, S. G., Keane, R. E., Maxwell, B. D., McGlone, M. S., & Perry, G. L. W. (2013). A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Global Ecology and Biogeography, 22(8), 900–912.

    Article  Google Scholar 

  • Meddens, A. J. H., Kolden, C. A., & Lutz, J. A. (2016). Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States. Remote Sensing of Environment, 186, 275–285.

    Article  Google Scholar 

  • Merschel, A. G., Heyerdahl, E. K., Spies, T. A., & Loehman, R. A. (2018). Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, Central Oregon, USA. Landscape Ecology, 33(7), 1195–1209.

    Article  Google Scholar 

  • Miller, R. F., & Tausch, R. J. (2001). The role of fire in pinyon and juniper woodlands: A descriptive analysis. In KEM Galley, TP Wilson (Eds.), Proceedings of the Invasive Species Workshop: The Role of Fire in the Control and Spread of Invasive Species. Fire Conference 2000: The First National Congress on Fire Ecology, Prevention, and Management (pp. 15–30). Misc Pub No. 11, Tall Timbers Research Station, Tallahassee.

    Google Scholar 

  • Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109(1), 66–80.

    Article  Google Scholar 

  • Miller, R. F., Bates, J. D., Svejcar, T. J., Pierson, F. B., & Eddleman, L. E. (2005). Biology, ecology, and management of western juniper. Tech Bull 152, Corvallis: Oregon State University Agricultural Experiment Station.

    Google Scholar 

  • Miller, R. F., Tausch, R. J., McArthur, E. D., Johnson, D. D., & Sanderson, S. C. (2008). Age structure and expansion of piñon-juniper woodlands: A regional perspective in the Intermountain West. Res Pap RMRS-RP-69. Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Miller, J. D., Safford, H. D., Crimmins, M., & Thode, A. E. (2009). Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade mountains, California and Nevada, USA. Ecosystems, 12, 16–32.

    Article  Google Scholar 

  • Morgan, P., Hardy, C. C., Swetnam, T. W., Rollins, M. G., & Long, D. G. (2001). Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire, 10, 349–342.

    Article  Google Scholar 

  • Morgan, P., Heyerdahl, E. K., & Gibson, C. E. (2008). Multi-season climate synchronized widespread forest fires throughout the 20th-century, Northern Rocky Mountains, USA. Ecology, 89(3), 717–728.

    Article  Google Scholar 

  • Morgan, P., Heyerdahl, E. K., Miller, C., & Wilson, A. M. (2014). Northern Rockies pyrogeography: An example of fire atlas utility. Fire Ecology, 10(1), 14–30. https://doi.org/10.4996/fireecology.1001014.

    Article  Google Scholar 

  • Morgan, P., Moy, M., Droske, C. A., Lewis, S. A., Lentile, L. B., Robichaud, P. R., Hudak, A. T., & Williams, C. J. (2015). Vegetation response to burn severity, native grass seeding, and salvage logging. Fire Ecology, 11(2), 31–58.

    Article  Google Scholar 

  • Morgan, P., Hudak, A. T., Wells, A., Baggett, L. S., Parks, S. A., Bright, B. C., & Green, P. (2017). Multidecadal trends in area burned at high severity in the Selway-Bitterroot Wilderness Area 1880-2012. International Journal of Wildland Fire, 26(11), 930–943.

    Article  Google Scholar 

  • Morgan, P., Heyerdahl, E. K., Strand, E. K., Bunting, S. C., Riser II, J. P., Abatzoglou, J. T., Nielsen-Pincus, M., & Johnson, M. (2020). Fire and land cover change in the Palouse Prairie–forest ecotone, Washington and Idaho, USA. Fire Ecology, 16(1), 1–17.

    Google Scholar 

  • Moritz, M. A., Hessburg, P. F., & Povak, N. A. (2011). Native fire regimes and landscape resilience. In D. McKenzie, C. Miller, & D. A. Falk (Eds.), The landscape ecology of fire (pp. 51–86). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Moritz, M. A., Topik, C., Allen, C. D., Hessburg, P. F., Morgan, P., Odion, D. C., Veblen, T. T., & McCullough, I. M. (2018). A statement of common ground regarding the role of wildfire in forested landscapes of the western United States. Fire Research Consensus Working Group Final Report. Retrieved January 21, 2019, from https://live-ncea-ucsb-edu-v01.pantheonsite.io/sites/default/files/2020-02/WildfireCommonGround.pdf.

  • Murphy, B., Williamson, G. J., & Bowman, D. M. (2011). Fire regimes: Moving from a fuzzy concept to geographic entity. The New Phytologist, 192, 316–318.

    Article  Google Scholar 

  • Murray, M. P., Bunting, S. C., & Morgan, P. (1998). Fire history of an isolated subalpine mountain range of the Intermountain Region, United States. Journal of Biogeography, 25, 1071–1080.

    Article  Google Scholar 

  • Murray, M. P., Bunting, S. C., & Morgan, P. (2000). Landscape trends (1753-1993) of whitebark pine (Pinus albicaulis) forests in the West Big Hole Range of Idaho/Montana, USA. Arctic, Antarctic, and Alpine Research, 32(4), 412–418.

    Article  Google Scholar 

  • National Aeronautics and Space Administration (NASA). (2019). Fire Information for Resource Management Systems (FIRMS). Retrieved June 12, 2019, from https://firms.modaps.eosdis.nasa.gov/map/#t:adv;d:2019-06-05..2019-06-12;l:viirs,modis_a,modis_t;@0.0,0.0,2z.

  • National Centers for Environmental Information (NCEI). (2020). International Multiproxy Paleofire Database, Asheville. Retrieved August 23, 2020, from https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/fire-history.

  • National Centers for Environmental Information (NCEI). (n.d.) Fire history. Retrieved November 2019, from https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/fire-history.

  • Noble, I. R., & Slatyer, R. O. (1980). The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetation, 43(1–2), 5–21.

    Article  Google Scholar 

  • North, M. P., Stevens, J. T., Greene, D. F., Coppoletta, M., Knapp, E. E., Latimer, A. M., Restaino, C. M., Tompkins, R. E., Welch, K. R., York, R. A., & Young, D. J. (2019). Tamm Review: Reforestation for resilience in dry western US forests. Forest Ecology and Management, 15(432), 209–224.

    Article  Google Scholar 

  • Pacific Southwest Region U.S. Fish and Wildlife Service. (2006). Centrocercus urophasianus. Wikimedia Commons. Retrieved March 20, 2020, from https://commons.wikimedia.org/w/index.php?curid=12016910.

  • Parks, S. A., Dillon, G. K., & Miller, C. (2014a). A new metric for quantifying burn severity: The relativized burn ratio. Remote Sensing, 6(3), 1827–1844.

    Article  Google Scholar 

  • Parks, S. A., Miller, C., Nelson, C. R., & Holden, Z. A. (2014b). Previous fires moderate burn severity of subsequent wildland fires in two large western US wilderness areas. Ecosystems, 17, 29–42.

    Article  Google Scholar 

  • Parks, S. A., Holsinger, L. M., Miller, C., & Nelson, C. R. (2015a). Wildland fire as a self-regulating mechanism: The role of previous burns and weather in limiting fire progression. Ecological Applications, 25(6), 1478–1492.

    Article  Google Scholar 

  • Parks, S. A., Miller, C., Parisien, M.-A., Holsinger, L. M., Dobrowski, S. Z., & Abatzoglou, J. (2015b). Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere, 6(12), 275. https://doi.org/10.1890/ES15-00294.1.

    Article  Google Scholar 

  • Parks, S. A., Miller, C., Holsinger, L. M., Baggett, L. S., & Bird, B. J. (2016). Wildland fire limits subsequent fire occurrence. International Journal of Wildland Fire, 25, 182–190. https://doi.org/10.1071/WF15107.

    Article  Google Scholar 

  • Parks, S. A., Holsinger, L. M., Panunto, M. H., Jolly, W. M., Dobrowski, S. Z., & Dillon, G. K. (2018). High-severity fire: Evaluating its key drivers and mapping its probability across western US forests. Environmental Research Letters, 13(4), 044037.

    Article  Google Scholar 

  • Parson, A., Robichaud, P. R., Lewis, S. A., Napper, C., & Clark, J. T. (2010). Field guide for mapping post-fire soil burn severity. Gen Tech Rep RMRS-GTR-243. Fort Collins: USDA Forest Service Rocky Mountain Research Station.

    Google Scholar 

  • Pausas, J. G., & Paula, S. (2012). Fuel shapes the fire–climate relationship: Evidence from Mediterranean ecosystems. Global Ecology and Biogeography, 21(11), 1074–1082.

    Article  Google Scholar 

  • Pausas, J. G., Llovet, J., Rodrigo, A., & Vallejo, R. (2008). Are wildfires a disaster in the Mediterranean basin? – A review. International Journal of Wildland Fire, 17, 713–723. https://doi.org/10.1071/WF07151.

    Article  Google Scholar 

  • Picotte, J. J., & Robertson, K. (2011). Timing constraints on remote sensing of wildland fire burned area in the southeastern US. Remote Sensing, 3(8), 1680–1690.

    Article  Google Scholar 

  • Picotte, J. J., Peterson, B., Meier, G., & Howard, S. M. (2016). 1984–2010 trends in fire burn severity and area for the conterminous US. International Journal of Wildland Fire, 25(4), 413–420. https://doi.org/10.1071/WF15039.

    Article  Google Scholar 

  • Pierce, J. L., Meyer, G. A., & Jull, A. T. (2004). Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature, 432(7013), 87–90.

    Article  Google Scholar 

  • Prichard, S. J., Stevens-Rumann, C. S., & Hessburg, P. F. (2017). Tamm review: Shifting global fire regimes: Lessons from reburns and research needs. Forest Ecology and Management, 396, 217–233.

    Article  Google Scholar 

  • Rego, F. C., Bunting, S. C., Strand, E. K., & Godinho-Ferreira, P. (2019). Applied landscape ecology. Hoboken: Wiley.

    Google Scholar 

  • Reinhardt, E. D., Keane, R. E., Calkin, D. E., & Cohen, J. D. (2008). Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States. Forest Ecology and Management 256(12), 1997–2006.

    Google Scholar 

  • Robichaud, P. R., Wagenbrenner, J. W., Lewis, S. A., Ashmun, L. E., Brown, R. E., & Wohlgemuth, P. M. (2013). Post-fire mulching for runoff and erosion mitigation; Part II: Effectiveness in reducing runoff and sediment yields from small catchments. Catena, 105, 93–111.

    Article  Google Scholar 

  • Rollins, M. G., Swetnam, T. W., & Morgan, P. (2001). Evaluating a century of fire patterns in two Rocky Mountain Wilderness areas using digital fire atlases. Canadian Journal of Forest Research, 31(12), 2107–2123.

    Article  Google Scholar 

  • Rollins, M. G., Morgan, P., & Swetnam, T. (2002). Landscape scale controls over 20th century fire occurrence in two large Rocky Mountain (USA) wilderness areas. Landscape Ecology, 17, 539–557.

    Article  Google Scholar 

  • Romme, W. H., Boyce, M. S., Gresswell, R., Merrill, E. H., Minshall, G. W., Whitlock, C., & Turner, M. G. (2011). Twenty years after the 1988 Yellowstone fires: Lessons about disturbance and ecosystems. Ecosystems, 14(7), 1196–1215.

    Article  Google Scholar 

  • Rossiter-Rachor, N. A., Setterfield, S. A., Douglas, M. M., Hutley, L. B., & Cook, G. D. (2008). Andropogon gayanus (gamba grass) invasion increases fire-mediated nitrogen losses in the tropical savannas of northern Australia. Ecosystems, 11(1), 77–88.

    Article  Google Scholar 

  • Roy, D. P., Boschetti, L., Justice, C. O., & Ju, J. (2008). The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment, 112(9), 3690–3707.

    Article  Google Scholar 

  • Roy, D. P., Boschetti, L., & Giglio, L. (2010). Remote sensing of global savanna fire occurrence, extent and properties. In M. J. Hill & N. P. Hanan (Eds.), Ecosystem function in global savannas: Measurement and modeling at landscape to global scales (pp. 239–255). Boca Raton: CRC Press, Taylor and Francis.

    Google Scholar 

  • Roy, D. P., Boschetti, L., & Smith, A. M. (2013). Satellite remote sensing of fires. In C. M. Belcher (Ed.), Fire phenomena and the Earth system: An interdisciplinary guide to fire science (pp. 77–90). London: Wiley.

    Chapter  Google Scholar 

  • Sage Grouse Initiative. (2017). Grazing management in perspective: A compatible tool for Sage Grouse Conservation. Retrieved July 17, 2019, from https://www.sagegrouseinitiative.com/grazing-management-perspective-compatible-tool-sage-grouse-conservation/.

  • Sankey, T. T., & Germino, M. J. (2008). Assessment of juniper encroachment with the use of satellite imagery and geospatial data. Rangeland Ecology & Management, 61, 412–418.

    Article  Google Scholar 

  • Scheller, R. M., Domingo, J. B., Sturtevant, B. R., Williams, J. S., Rudy, A., Gustafson, E. J., & Mladenoff, D. (2007). Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecological Modelling, 201, 409–419.

    Article  Google Scholar 

  • Schoennagel, T., Balch, J. K., Brenkert-Smith, H., Dennison, P. E., Harvey, B. J., Krawchuk, M. A., Mietkiewicz, N., Morgan, P., Moritz, M. A., Rasker, R., & Turner, M. G. (2017). Adapt to more wildfire in western North American forests as climate changes. PNAS, 114(18), 4582–4590.

    Article  Google Scholar 

  • Sequeira, C. R., Montiel-Molina, C., & Rego, F. C. (2019). Landscape-based fire scenarios and fire types in the Ayllón massif (Central Mountain Range, Spain), 19th and 20th centuries. Cuadernos de Investigación Geográfica, 2020(46). https://doi.org/10.18172/cig.3796.

  • Shlisky, A., Waugh, J., Gonzalez, P., González, M., Manta, M., Santoso, H., Rodrıguez-Trejo, D., Swaty, R., Schmidt, D., Kaufmann, M., Myers, R., Alencar, A., Kearns, F., Johnson, D., Smith, J. L., Zollner, D., Fulks, W., & Nuruddin, A. (2007). Fire, ecosystems and people: Threats and strategies for global biodiversity conservation. Global Fire Initiative Tech Rep 2. Arlington: The Nature Conservancy. Retrieved May 30, 2019, from http://www.tncfire.org/documents/fire_ecosystems_and_people.pdf.

  • Short, K. C. (2017). Spatial wildfire occurrence data for the United States, 1992-2015 [FPA_FOD_20170508] (4th edn). Fort Collins: USDA Forest Service Res Data Archive. https://doi.org/10.2737/RDS-2013-0009.4. Retrieved June 2, 2019.

  • Society for Ecological Restoration International Science & Policy Working Group (SER). (2004). Primer on ecological restoration. Retrieved July 19, 2019, from https://www.ctahr.hawaii.edu/littonc/PDFs/682_SERPrimer.pdf.

  • Sparks, A. M., Smith, A. M., Talhelm, A. F., Kolden, C. A., Yedinak, K. M., & Johnson, D. M. (2017). Impacts of fire radiative flux on mature Pinus ponderosa growth and vulnerability to secondary mortality agents. International Journal of Wildland Fire, 26(1), 95–106.

    Article  Google Scholar 

  • Stephens, S. L., Collins, B. M., Fettig, C. J., Finney, M. A., Hoffman, C. M., Knapp, E. E., North, M. P., Safford, H., & Wayman, R. B. (2018). Drought, tree mortality, and wildfire in forests adapted to frequent fire. BioScience, 68(2), 77–88.

    Article  Google Scholar 

  • Stephens, S. L., Battaglia, M. A., Churchill, D. J., Collins, B. M., Coppoletta, M., Hoffman, C. M., Lydersen, J. M., North, M. P., Parsons, R. A., Ritter, S. M., & Stevens, J. T. (2020). Forest restoration and fuels reduction: Convergent or divergent? BioSciences, 71(1), 85–101.

    Google Scholar 

  • Stevens, J. T., Safford, H. D., North, M. P., Fried, J. S., Gray, A. N., Brown, P. M., Dolanc, C. R., Dobrowski, S. Z., Falk, D. A., Farris, C. A., & Franklin, J. F. (2016). Average stand age from forest inventory plots does not describe historical fire regimes in ponderosa pine and mixed-conifer forests of western North America. PLoS One, 11(5), e0147688.

    Article  Google Scholar 

  • Stevens-Rumann, C., & Morgan, P. (2016). Repeated wildfires alter forest recovery of mixed-conifer ecosystems. Ecological Applications, 26(6), 1842–1853. https://doi.org/10.1890/15-1521.1.

    Article  Google Scholar 

  • Stevens-Rumann, C. S., & Morgan, P. (2019). Tree regeneration following wildfires in the western US: A review. Fire Ecology, 15(1), 15.

    Article  Google Scholar 

  • Stevens-Rumann, C., Morgan, P., & Hoffman, C. (2015). Bark beetles and wildfires: How does forest recovery change with repeated disturbance in mixed conifer forests? Ecosphere, 6(6), 1–7. https://doi.org/10.1890/ES14-00443.1.

    Article  Google Scholar 

  • Stevens-Rumann, C., Prichard, S. J., Strand, E. K., & Morgan, P. (2016). Prior wildfires influence burn severity of subsequent fires. Canadian Journal of Forest Research, 46(11), 1375–1385.

    Article  Google Scholar 

  • Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2018). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252.

    Article  Google Scholar 

  • Stevens-Rumann, C., Morgan, P., Davis, K., Kemp, K., & Blades, J. (2019). Post-fire tree regeneration (or lack thereof) can change ecosystems. Science Review No 5. Kalispell: Northern Rockies Fire Science Network. Retrieved March 2020, from https://www.nrfirescience.org/sites/default/files/TreeRegenerationReviewFinal_compressed_0.pdf.

  • Swetnam, T. W., & Betancourt, J. L. (1990). Fire-southern oscillation relations in the southwestern United States. Sciences, 249(4972), 1017–1020.

    Article  Google Scholar 

  • Swetnam, T. W., Allen, C. D., & Betancourt, J. L. (1999). Applied historical ecology: Using the past to manage for the future. Ecological Applications, 9(4), 1189–1206.

    Article  Google Scholar 

  • Swetnam, T. W., Farella, J., Roos, C. I., Liebmann, M. J., Falk, D. A., & s. (2016). Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA. Philosophical Transactions of Royal Society of London B: Biological Science, 371(1696), 20150168.

    Article  Google Scholar 

  • Tepley, A. J., Swanson, F. J., & Spies, T. A. (2013). Fire-mediated pathways of stand development in Douglas-fir/western hemlock forests of the Pacific Northwest, USA. Ecology, 94(8), 1729–1743.

    Article  Google Scholar 

  • Teske, C. C., Seielstad, C. A., & Queen, L. P. (2012). Characterizing fire-on-fire interactions in three large wilderness areas. Fire Ecology, 8, 82–106.

    Article  Google Scholar 

  • Thompson, M. P., Bowden, P., Brough, A., Scott, J. H., Gilbertson-Day, J., Taylor, A., Anderson, J., & Haas, J. R. (2016). Application of wildfire risk assessment results to wildfire response planning in the southern Sierra Nevada, California, USA. Forests, 7(3), 64.

    Article  Google Scholar 

  • Turner, M. G., Gardner, R. H., Dale, V. H., & O’Neill, R. V. (1989). Predicting the spread of disturbance across heterogeneous landscapes. Oikos, 55, 121–129.

    Article  Google Scholar 

  • Turner, M. G., Romme, W. H., Gardner, R. H., O’Neill, R. V., & Kratz, T. K. (1993). A revised concept of landscape equilibrium: Disturbance and stability on scaled landscapes. Landscape Ecology, 8, 213–227.

    Article  Google Scholar 

  • Turner, M. G., Romme, W. H., Gardner, R. H., & Hargrove, W. W. (1997). Effects of fire size and pattern on early succession in Yellowstone National Park. Ecological Monographs, 67(4), 411–433.

    Article  Google Scholar 

  • USDA Forest Service. (n.d.-a) FlamMap. Retrieved December 18, 2019, from https://www.firelab.org/project/flammap.

  • USDA Forest Service. (n.d.-b) Forest Inventory and analysis. Retrieved March 25, 2019, from https://www.fia.fs.fed.us.

  • Walker, R. B., Coop, J. D., Parks, S. A., & Trader, L. (2018). Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere, 9(4), e02182.

    Article  Google Scholar 

  • Washington Department of Natural Resources. (2020) 20-year forest health strategic plan Eastern Washington. Retrieved November 20, 2020, https://www.dnr.wa.gov/publications/rp_forest_health_20_year_strategic_plan.pdf

  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase western US forest wildfire activity. Science, 313(5789), 940–943.

    Article  Google Scholar 

  • Whitlock, C., Marlon, J., Briles, C., Brunelle, A., Long, C., & Bartlein, P. (2008). Long-term relations among fire, fuel, and climate in the north-western US based on lake-sediment studies. International Journal of Wildland Fire, 17(1), 72–83.

    Article  Google Scholar 

  • Whitlock, C., Higuera, P. E., McWethy, D. B., & Briles, C. E. (2010). Paleoecological perspectives on fire ecology: Revisiting the fire-regime concept. Open Ecology Journal, 5(3), 1.

    Google Scholar 

  • With, K. A. (1997). The Application of neutral landscape models in conservation biology. Conservation Biology, 11(5), 1069–1080.

    Article  Google Scholar 

  • With, K. A., Gardner, R. H., & Turner, M. G. (1997). Landscape connectivity and population distributions in heterogeneous environments. Oikos, 1, 151–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro Rego, F., Morgan, P., Fernandes, P., Hoffman, C. (2021). Fire Regimes, Landscape Dynamics, and Landscape Management. In: Fire Science. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-69815-7_12

Download citation

Publish with us

Policies and ethics