Skip to main content

Visible and Thermal Camera-Based Jaywalking Estimation Using a Hierarchical Deep Learning Framework

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 Workshops (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12628))

Included in the following conference series:

Abstract

Jaywalking is an abnormal pedestrian behavior which significantly increases the risk of road accidents. Owing to this risk, autonomous driving applications should robustly estimate the jaywalking pedestrians. However, the task of robustly estimating jaywalking is not trivial, especially in the case of visible camera-based estimation. In this work, a two-step hierarchical deep learning formulation using visible and thermal camera is proposed to address these challenges. The two steps are comprised of a deep learning-based scene classifier and two scene-specific semantic segmentation frameworks. The scene classifier classifies the visible-thermal image into legal pedestrian crossing and illegal pedestrian crossing scenes. The two scene-specific segmentation frameworks estimate the normal pedestrians and jaywalking pedestrians. The two segmentation frameworks are individually trained on the legal or illegal crossing scenes. The proposed framework is validated on the FLIR public dataset and compared with baseline algorithms. The experimental results show that the proposed hierarchical strategy reports better accuracy than baseline algorithms in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. John, V., Guo, C., Mita, S., Kidono, K., Guo, C., Ishimaru, K.: Fast road scene segmentation using deep learning and scene-based models. In: ICPR (2016)

    Google Scholar 

  2. John, V., Liu, Z., Guo, C., Mita, S., Kidono, K.: Real-time lane estimation using deep features and extra trees regression. In: Bräunl, T., McCane, B., Rivera, M., Yu, X. (eds.) PSIVT 2015. LNCS, vol. 9431, pp. 721–733. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29451-3_57

    Chapter  Google Scholar 

  3. John, V., et al.: Sensor fusion of intensity and depth cues using the ChiNet for semantic segmentation of road scenes. In: IEEE Intelligent Vehicles Symposium, pp. 585–590 (2018)

    Google Scholar 

  4. John, V., Mita, S.: RVNet: deep sensor fusion of monocular camera and radar for image-based obstacle detection in challenging environments. In: Lee, C., Su, Z., Sugimoto, A. (eds.) PSIVT 2019. LNCS, vol. 11854, pp. 351–364. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34879-3_27

    Chapter  Google Scholar 

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41, 1–58 (2009)

    Google Scholar 

  6. John, V., Tsuchizawa, S., Liu, Z., Mita, S.: Fusion of thermal and visible cameras for the application of pedestrian detection. Signal Image Video Process. 11, 517–524 (2017)

    Article  Google Scholar 

  7. Dollar, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1532–1545 (2014)

    Article  Google Scholar 

  8. Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for pedestrian detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1751–1760 (2015)

    Google Scholar 

  9. Ohn-Bar, E., Trivedi, M.M.: To boost or not to boost? On the limits of boosted trees for object detection. CoRR abs/1701.01692 (2017)

    Google Scholar 

  10. Brazil, G., Yin, X., Liu, X.: Illuminating pedestrians via simultaneous detection & segmentation. CoRR abs/1706.08564 (2017)

    Google Scholar 

  11. Du, X., El-Khamy, M., Lee, J., Davis, L.S.: Fused DNN: a deep neural network fusion approach to fast and robust pedestrian detection. CoRR abs/1610.03466 (2016)

    Google Scholar 

  12. Carvalho, J.F., Vejdemo-Johansson, M., Pokorny, F.T., Kragic, D.: Long-term prediction of motion trajectories using path homology clusters. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China, November 3–8, 2019, pp. 765–772. IEEE (2019)

    Google Scholar 

  13. Yoo, Y., Yun, K., Yun, S., Hong, J., Jeong, H., Choi, J.: Visual path prediction in complex scenes with crowded moving objects. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2668–2677 (2016)

    Google Scholar 

  14. Javan Roshtkhari, M., Levine, M.D.: An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions. Comput. Vis. Image Underst. 117, 1436–1452 (2013)

    Article  Google Scholar 

  15. Rudenko, A., Palmieri, L., Arras, K.O.: Joint long-term prediction of human motion using a planning-based social force approach. In: 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21–25, 2018, pp. 1–7. IEEE (2018)

    Google Scholar 

  16. Solaimanpour, S., Doshi, P.: A layered HMM for predicting motion of a leader in multi-robot settings. In: ICRA, pp. 788–793. IEEE (2017)

    Google Scholar 

  17. Bera, A., Kim, S., Manocha, D.: Realtime anomaly detection using trajectory-level crowd behavior learning. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1289–1296 (2016)

    Google Scholar 

  18. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps (2019)

    Google Scholar 

  19. Medel, J.R., Savakis, A.E.: Anomaly detection in video using predictive convolutional long short-term memory networks. CoRR abs/1612.00390 (2016)

    Google Scholar 

  20. Wu, X., Zhao, W., Yuan, S.: Skeleton-based pedestrian abnormal behavior detection with spatio-temporal model in public places. In: Journal of Physics Conference Series, vol. 1518, p. 012018 (2020)

    Google Scholar 

  21. Hazirbas, C., Ma, L., Domokos, C., Cremers, D.: FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 213–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_14

    Chapter  Google Scholar 

  22. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. CoRR abs/1510.01553 (2015)

    Google Scholar 

  23. Ha, Q., Watanabe, K., Karasawa, T., Ushiku, Y., Harada, T.: MFNet: towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5108–5115 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay John .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

John, V., Boyali, A., Thompson, S., Lakshmanan, A., Mita, S. (2021). Visible and Thermal Camera-Based Jaywalking Estimation Using a Hierarchical Deep Learning Framework. In: Sato, I., Han, B. (eds) Computer Vision – ACCV 2020 Workshops. ACCV 2020. Lecture Notes in Computer Science(), vol 12628. Springer, Cham. https://doi.org/10.1007/978-3-030-69756-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69756-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69755-6

  • Online ISBN: 978-3-030-69756-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics