Skip to main content

The Key Elements in the Design of Passive Assistive Devices

  • Conference paper
  • First Online:
Wearable Robotics: Challenges and Trends (WeRob 2020)

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 27))

Included in the following conference series:

Abstract

Nowadays, enhancing the physical abilities of able-bodied humans attracted the researchers’ attention besides the development of assistive devices for people with mobility disorders. As a result, the interest in designing of cheap and soft wearable exoskeletons called exosuits is distinctly growing. Careful investigation of the biological musculoskeletal systems reveals three essential features simplifying gait control. The first property is the embedded compliance in the muscle-tendon-complex (MTC). Force-velocity or damper-like muscle behavior is the second feature. The last useful feature is in the biological morphological design of multi-articular muscles. These properties can be implemented in passive, assistive devices in isolation or combination. In this paper, we summarize a few studies on passive lower limb assistive devices that benefit from these two design concepts. We elaborate more on the outcomes of a recent study on a lower limb exosuit design with two biarticular elastic elements that combine the two aforementioned mechanisms in a single device.

This article is partially supported by the German Research Foundation (DFG) under the Grant No. AH307/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apparatus for facilitating walking, running, and jumping

    Google Scholar 

  2. H. Barazesh, M.A. Sharbafi, A biarticular passive exosuit to support balance control can reduce metabolic cost of walking. Bioinspiration & Biomimetics 15(3), 036009 (2020)

    Article  Google Scholar 

  3. S.H. Collins, M. Bruce Wiggin, G.S. Sawicki, Reducing the energy cost of human walking using an unpowered exoskeleton. Nature 522(7555), 212 (2015)

    Google Scholar 

  4. A.J. Van Soest, A.L. Schwab, M.F. Bobbert, G.J. van Ingen Schenau, The influence of the biarticularity of the gastrocnemius muscle on vertical-jumping achievement. J. Biomech. 26(1), 1–8 (1993)

    Google Scholar 

  5. M.A. Sharbafi, C. Rode, S. Kurowski, D. Scholz, R. Möckel, K. Radkhah, G. Zhao, A.M. Rashty, Oskar von Stryk, A. Seyfarth, A new biarticular actuator design facilitates control of leg function in biobiped3. Bioinspiration & biomimetics 11(4), 046003 (2016)

    Google Scholar 

  6. A.J. Van den Bogert, Exotendons for assistance of human locomotion. Biomed. Eng. Online 2(1), 17 (2003)

    Article  Google Scholar 

  7. S. Portnoy, A. Kristal, A. Gefen, I. Siev-Ner, Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet. Gait & Posture 35(1), 121–125 (2012)

    Article  Google Scholar 

  8. A. Naseri, M.M. Moghaddam, M. Gharini, M.A. Sharbafi, A novel adjustable damper design for hybrid passive ankle prosthesis. Actuators (2020)

    Google Scholar 

  9. M.C. Faustini, R.R. Neptune, R.H. Crawford, S.J. Stanhope, Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Trans. Biomed. Eng. 55(2), 784–790 (2008)

    Article  Google Scholar 

  10. M.M. Alemi, S. Madinei, S. Kim, D. Srinivasan, M.A. Nussbaum, Effects of two passive back-support exoskeletons on muscle activity, energy expenditure, and subjective assessments during repetitive lifting. Hum. Factors 62(3), 458–474 (2020)

    Article  Google Scholar 

  11. B.F. Palmer, Artificial leg. US Patent (1846)

    Google Scholar 

  12. W. Van Dijk, H. Van der Kooij, E. Hekman, A passive exoskeleton with artificial tendons: design and experimental evaluation, in 2011 IEEE International Conference on Rehabilitation Robotics (IEEE, New York, 2011), pp. 1–6

    Google Scholar 

  13. R. Nasiri, A. Ahmadi, M.N. Ahmadabadi, Reducing the energy cost of human running using an unpowered exoskeleton. IEEE Trans. Neural Syst. Rehab. Eng. 26(10), 2026–2032 (2018)

    Article  Google Scholar 

  14. M.A. Sharbafi, A.M.N. Rashty, C. Rode, A. Seyfarth, Reconstruction of human swing leg motion with passive biarticular muscle models. Hum. Movement Sci. 52, 96–107 (2017)

    Article  Google Scholar 

  15. M.A. Sharbafi, H. Barazesh, M. Iranikhah, A. Seyfarth, Leg force control through biarticular muscles for human walking assistance. Front. Neurorobot. 12, 39 (2018)

    Article  Google Scholar 

  16. M.A. Sharbafi, A. Seyfarth, FMCH: a new model for human-like postural control in walking, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, New York, 2015), pp. 5742–5747

    Google Scholar 

  17. H.-M. Maus, S.W. Lipfert, M. Gross, J. Rummel, A. Seyfarth, Upright human gait did not provide a major mechanical challenge for our ancestors. Nat. Commun. 1, 70 (2010)

    Article  Google Scholar 

  18. M.A. Sharbafi, M.N. Ahmadabadi, M.J. Yazdanpanah, A.M. Nejad, A. Seyfarth, Compliant hip function simplifies control for hopping and running, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, New York, 2013), pp. 5127–5133

    Google Scholar 

  19. M.A. Sharbafi, A. Seyfarth, Stable running by leg force-modulated hip stiffness, in 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (IEEE, New York, 2014), pp. 204–210

    Google Scholar 

  20. G. Zhao, M.A. Sharbafi, M. Vlutters, E. van Asseldonk, A. Seyfarth, Bio-inspired balance control assistance can reduce metabolic energy consumption in human walking. IEEE Trans. Neural Syst. Rehab. Eng. (2019)

    Google Scholar 

  21. A.T. Asbeck, S.M.M. De Rossi, I. Galiana, Y. Ding, C.J. Walsh, Stronger, smarter, softer: next-generation wearable robots. IEEE Rob. Autom. Maga. 21(4), 22–33 (2014)

    Article  Google Scholar 

  22. J. Zhang, P. Fiers, K.A. Witte, R.W. Jackson, K.L. Poggensee, C.G. Atkeson, S.H. Collins, Human-in-the-loop optimization of exoskeleton assistance during walking. Science 356(6344), 1280–1284 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar A. Sharbafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharbafi, M.A. (2022). The Key Elements in the Design of Passive Assistive Devices. In: Moreno, J.C., Masood, J., Schneider, U., Maufroy, C., Pons, J.L. (eds) Wearable Robotics: Challenges and Trends. WeRob 2020. Biosystems & Biorobotics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-69547-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69547-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69546-0

  • Online ISBN: 978-3-030-69547-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics