Skip to main content

Emotional Landscape Image Generation Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Included in the following conference series:

Abstract

We design a deep learning framework that generates landscape images that match a given emotion. We are working on a more challenging approach to generate landscape scenes that do not have main objects making it easier to recognize the emotion. To solve this problem, deep networks based on generative adversarial networks are proposed. A new residual unit called emotional residual unit (ERU) is proposed to better reflect the emotion on training. An affective feature matching loss (AFM-loss) optimized for the emotional image generation is also proposed. This approach produced better images according to the given emotions. To demonstrate performance of the proposed model, a set of experiments including user studies was conducted. The results reveal a higher preference in the new model than the previous ones, demonstrating the production of images suitable for the given emotions. Ablation studies demonstrate that the ERU and AFM-loss enhanced the performance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, J., She, D., Sun, M.: Joint image emotion classification and distribution learning via deep convolutional neural network. IJCA I, 3266–3272 (2017)

    Google Scholar 

  2. Shi, C., Pun, C.: Multiscale superpixel-based hyperspectral image classification using recurrent neural networks with stacked autoencoders. IEEE Trans. Multimed. 22, 487–501 (2019)

    Google Scholar 

  3. Lyu, F., Wu, Q., Hu, F., Wu, Q., Tan, M.: Attend and imagine: multi-label image classification with visual attention and recurrent neural networks. IEEE Trans. Multimed. 21, 1971–1981 (2019)

    Article  Google Scholar 

  4. Dong, L., et al.: CUNet: a compact unsupervised network for image classification. IEEE Trans. Multimed. 20, 2012–2021 (2018)

    Google Scholar 

  5. Wu, S., Ji, Q., Wang, S., Wong, H.S., Yu, Z., Xu, Y.: Semi-supervised image classification with self-paced cross-task networks. IEEE Trans. Multimed. 20, 851–865 (2018)

    Article  Google Scholar 

  6. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  7. Huang, G., Liu, Z., Maaten, L.V.d., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  11. Fu, K., Zhao, Q., Gu, I.Y.: Refinet: a deep segmentation assisted refinement network for salient object detection. IEEE Trans. Multimed. 21, 457–469 (2019)

    Article  Google Scholar 

  12. Chen, C., Ling, Q.: Adaptive convolution for object detection. IEEE Trans. Multimed. 21, 3205–3217 (2019)

    Article  Google Scholar 

  13. Tang, Y., Wu, X.: Scene text detection using superpixel-based stroke feature transform and deep learning based region classification. IEEE Trans. Multimed. 20, 2276–2288 (2018)

    Article  Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  16. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  17. Chen, L., Wu, L., Hu, Z., Wang, M.: Quality-aware unpaired image-to-image translation. IEEE Trans. Multimed. 21, 2664–2674 (2019)

    Article  Google Scholar 

  18. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  19. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  20. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  21. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015)

    Google Scholar 

  23. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network (2016)

    Google Scholar 

  24. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  25. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks (2017)

    Google Scholar 

  26. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  27. Guo, Y., Chen, Q., Chen, J., Wu, Q., Shi, Q., Tan, M.: Auto-embedding generative adversarial networks for high resolution image synthesis. IEEE Trans. Multimed. 21, 2726–2737 (2019)

    Article  Google Scholar 

  28. Xu, W., Keshmiri, S., Wang, G.R.: Adversarially approximated autoencoder for image generation and manipulation. IEEE Trans. Multimed. 21, 2387–2396 (2019)

    Article  Google Scholar 

  29. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks (2018)

    Google Scholar 

  30. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228 (2018)

    Google Scholar 

  31. Hong, S., Yang, D., Choi, J., Lee, H.: Inferring semantic layout for hierarchical text-to-image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7986–7994 (2018)

    Google Scholar 

  32. Tan, F., Feng, S., Ordonez, V.: Text2Scene: generating compositional scenes from textual descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6710–6719 (2019)

    Google Scholar 

  33. Zhao, S., Gao, Y., Jiang, X., Yao, H., Chua, T.S., Sun, X.: Exploring principles-of-art features for image emotion recognition. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 47–56. ACM (2014)

    Google Scholar 

  34. Ng, H.W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 443–449. ACM (2015)

    Google Scholar 

  35. Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple deep network learning. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 435–442. ACM (2015)

    Google Scholar 

  36. Wu, B., Jia, J., Yang, Y., Zhao, P., Tang, J., Tian, Q.: Inferring emotional tags from social images with user demographics. IEEE Trans. Multimed. 19, 1670–1684 (2017)

    Article  Google Scholar 

  37. Kim, H.R., Kim, Y.S., Kim, S.J., Lee, I.K.: Building emotional machines: recognizing image emotions through deep neural networks. IEEE Trans. Multimed. 20, 2980–2992 (2018)

    Article  Google Scholar 

  38. Zhou, Y., Shi, B.E.: Photorealistic facial expression synthesis by the conditional difference adversarial autoencoder. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 370–376. IEEE (2017)

    Google Scholar 

  39. Lu, Y., Tai, Y.W., Tang, C.K.: Attribute-guided face generation using conditional CycleGAN. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 282–297 (2018)

    Google Scholar 

  40. Song, L., Lu, Z., He, R., Sun, Z., Tan, T.: Geometry guided adversarial facial expression synthesis. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 627–635. ACM (2018)

    Google Scholar 

  41. Ding, H., Sricharan, K., Chellappa, R.: ExprGAN: facial expression editing with controllable expression intensity. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  42. Yeh, R., Liu, Z., Goldman, D.B., Agarwala, A.: Semantic facial expression editing using autoencoded flow (2016)

    Google Scholar 

  43. Lang, P.J.: Imagery in therapy: an information processing analysis of fear. Behav. Ther. 8, 862–886 (1977)

    Article  Google Scholar 

  44. Zhang, Q., Lee, M.: Emotion development system by interacting with human EEG and natural scene understanding. Cogn. Syst. Res. 14, 37–49 (2012)

    Article  Google Scholar 

  45. Bradley, M.M., Sabatinelli, D., Lang, P.: Emotion and Motivation in the Perceptual Processing of Natural Scenes. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  46. Simola, J., Le Fevre, K., Torniainen, J., Baccino, T.: Affective processing in natural scene viewing: valence and arousal interactions in eye-fixation-related potentials. NeuroImage 106, 21–33 (2015)

    Article  Google Scholar 

  47. Zhao, S., Ding, G., Huang, Q., Chua, T.S., Schuller, B.W., Keutzer, K.: Affective image content analysis: a comprehensive survey. IJCA I, 5534–5541 (2018)

    Google Scholar 

  48. Zhao, S., Yao, H., Gao, Y., Ding, G., Chua, T.S.: Predicting personalized image emotion perceptions in social networks. IEEE Trans. Affect. Comput. 9, 526–540 (2016)

    Article  Google Scholar 

  49. Karacan, L., Akata, Z., Erdem, A., Erdem, E.: Learning to generate images of outdoor scenes from attributes and semantic layouts (2016)

    Google Scholar 

  50. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  51. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  52. Osgood, C.E., Suci, G.J., Tannenbaum, P.H.: The Measurement of Meaning. Number 47. University of Illinois press, Champaign (1957)

    Google Scholar 

  53. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  54. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  55. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  56. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling (2014)

    Google Scholar 

  57. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs (2016)

    Google Scholar 

  58. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  59. Geisler, W.S., Perry, J.S.: Statistics for optimal point prediction in natural images. J. Vis. 11, 14 (2011)

    Article  Google Scholar 

  60. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from abbey to zoo. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492. IEEE (2010)

    Google Scholar 

  61. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1452–1464 (2017)

    Article  Google Scholar 

  62. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  63. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

    Google Scholar 

  64. Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s mechanical turk: a new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6, 3–5 (2011)

    Article  Google Scholar 

  65. David, A.M., Amores, J.: The emotional GAN : priming adversarial generation of art with emotion. In: NIPS 2017 Workshop (2017)

    Google Scholar 

  66. Kuperman, V., Estes, Z., Brysbaert, M., Warriner, A.B.: Emotion and language: valence and arousal affect word recognition. J. Exp. Psychol. Gen. 143, 1065 (2014)

    Article  Google Scholar 

  67. Kavalerov, I., Czaja, W., Chellappa, R.: cGANs with multi-hinge loss. arXiv preprint arXiv:1912.04216 (2019)

Download references

Acknowledgement

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-2018-0-01419) supervised by the IITP (Institute for Information and Communications Technology Planning and Evaluation) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C2014622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Kwon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, C., Lee, IK. (2021). Emotional Landscape Image Generation Using Generative Adversarial Networks. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics