Skip to main content

Double Targeted Universal Adversarial Perturbations

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12625))

Included in the following conference series:

Abstract

Despite their impressive performance, deep neural networks (DNNs) are widely known to be vulnerable to adversarial attacks, which makes it challenging for them to be deployed in security-sensitive applications, such as autonomous driving. Image-dependent perturbations can fool a network for one specific image, while universal adversarial perturbations are capable of fooling a network for samples from all classes without selection. We introduce a double targeted universal adversarial perturbations (DT-UAPs) to bridge the gap between the instance-discriminative image-dependent perturbations and the generic universal perturbations. This universal perturbation attacks one targeted source class to sink class, while having a limited adversarial effect on other non-targeted source classes, for avoiding raising suspicions. Targeting the source and sink class simultaneously, we term it double targeted attack (DTA). This provides an attacker with the freedom to perform precise attacks on a DNN model while raising little suspicion. We show the effectiveness of the proposed DTA algorithm on a wide range of datasets and also demonstrate its potential as a physical attack (Code: https://github.com/phibenz/double-targeted-uap.pytorch).

P. Benz and C. Zhang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutskever, I., Hinton, G.E., Krizhevsky, A.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag. 29, 82–97 (2012)

    Google Scholar 

  3. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167. ACM (2008)

    Google Scholar 

  4. Zhang, C., Rameau, F., Kim, J., Argaw, D.M., Bazin, J.C., Kweon, I.S.: Deepptz: deep self-calibration for PTZ cameras. In: Winter Conference on Applications of Computer Vision (WACV) (2020)

    Google Scholar 

  5. Zhang, C., et al.: Revisiting residual networks with nonlinear shortcuts. In: British Machine Vision Conference (BMVC) (2019)

    Google Scholar 

  6. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  8. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: CD-UAP: class discriminative universal adversarial perturbation. In: AAAI Conference on Artificial Intelligence (AAAI) (2020)

    Google Scholar 

  9. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: Understanding adversarial examples from the mutual influence of images and perturbations. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  10. Liu, H., et al.: Universal adversarial perturbation via prior driven uncertainty approximation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2941–2949 (2019)

    Google Scholar 

  11. Benz, P., Zhang, C., Imtiaz, T., Kweon, I.S.: Data from model: extracting data from non-robust and robust models. In: CVPR Workshop on Adversarial Machine Learning in Computer Vision (2020)

    Google Scholar 

  12. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  13. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236 (2016)

  14. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  15. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: IEEE Symposium on Security and Privacy (SP). IEEE 2017, pp. 39–57 (2017)

    Google Scholar 

  16. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773 (2017)

    Google Scholar 

  17. Khrulkov, V., Oseledets, I.: Art of singular vectors and universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8562–8570 (2018)

    Google Scholar 

  18. Mopuri, K.R., Garg, U., Babu, R.V.: Fast feature fool: A data independent approach to universal adversarial perturbations. In: 2017 British Conference on Machine Vision (BMVC), IEEE (2017)

    Google Scholar 

  19. Metzen, J.H., Kumar, M.C., Brox, T., Fischer, V.: Universal adversarial perturbations against semantic image segmentation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2774–2783. IEEE (2017)

    Google Scholar 

  20. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4422–4431 (2018)

    Google Scholar 

  21. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  22. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  23. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch (2017)

    Google Scholar 

  24. Liu, A., Wang, J., Liu, X., Cao, B., Zhang, C., Yu, H.: Bias-based universal adversarial patch attack for automatic check-out (2020)

    Google Scholar 

  25. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. Electron. Imaging 2017, 70–76 (2017)

    Article  Google Scholar 

  26. Sünderhauf, N., et al.: The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 37, 405–420 (2018)

    Article  Google Scholar 

  27. Melis, M., Demontis, A., Biggio, B., Brown, G., Fumera, G., Roli, F.: Is deep learning safe for robot vision. Adversarial examples against the iCub humanoid. CoRR, abs/1708.06939 (2017)

    Google Scholar 

  28. Clark, G., Doran, M., Glisson, W.: A malicious attack on the machine learning policy of a robotic system. In: 17th IEEE International Conference on Trust, Security And Privacy In Computing and Communications/12th IEEE International Conference on Big Data Science And Engineering (TrustCom/BigDataSE). IEEE 2018, pp. 516–521 (2018)

    Google Scholar 

  29. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625–1634 (2018)

    Google Scholar 

  30. Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling a real car with adversarial traffic signs. arXiv preprint arXiv:1907.00374 (2019)

  31. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014)

    Google Scholar 

  32. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  33. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Networks 32, 323–332 (2012)

    Google Scholar 

  34. Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2019)

    Google Scholar 

  35. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The YCB object and model set: Towards common benchmarks for manipulation research. In: International Conference on Advanced Robotics (ICAR). IEEE 2015, pp. 510–517 (2015)

    Google Scholar 

  36. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE 2009, pp. 248–255 (2009)

    Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  38. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  39. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  40. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  41. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Benz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benz, P., Zhang, C., Imtiaz, T., Kweon, I.S. (2021). Double Targeted Universal Adversarial Perturbations. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12625. Springer, Cham. https://doi.org/10.1007/978-3-030-69538-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69538-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69537-8

  • Online ISBN: 978-3-030-69538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics