Skip to main content

Biology of Nerve Injury

  • Chapter
  • First Online:
Operative Brachial Plexus Surgery

Abstract

The variable outcomes following nerve injury reflect a complex and imperfect physiological response with a slow and inefficient regenerative process. The interaction between regenerating axons, supportive glial cells, and target organelles – all key to successful axonal elongation – may depend on but not limited to trauma severity, level of injury, host factors, and reparative efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spaeth CS, Boydston EA, Figard LR, Zuzek A, Bittner GD. A model for sealing plasmalemmal damage in neurons and other eukaryotic cells. J Neurosci. 2010;30(47):15790–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watson WE. Observations on the nucleolar and total cell body nucleic acid of injured nerve cells. J Physiol. 1968;196(3):655–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg Am. 2000;25(3):391–414.

    Article  CAS  PubMed  Google Scholar 

  4. Dodge ME, Wang J, Guy C, Rankin S, Rahimtula M, Mearow KM. Stress-induced heat shock protein 27 expression and its role in dorsal root ganglion neuronal survival. Brain Res. 2006;1068(1):34–48.

    Article  CAS  PubMed  Google Scholar 

  5. Yan Q, Elliott J, Snider WD. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature. 1992;360(6406):753–5.

    Article  CAS  PubMed  Google Scholar 

  6. Yin Q, Kemp GJ, Frostick SP. Neurotrophins, neurones and peripheral nerve regeneration. J Hand Surg Br. 1998;23(4):433–7.

    Article  CAS  PubMed  Google Scholar 

  7. Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus. 2004;16(5):E1.

    Article  PubMed  Google Scholar 

  8. George EB, Glass JD, Griffin JW. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci. 1995;15(10):6445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adalbert R, Morreale G, Paizs M, Conforti L, Walker SA, Roderick HL, et al. Intra-axonal calcium changes after axotomy in wild-type and slow Wallerian degeneration axons. Neuroscience. 2012;225:44–54.

    Article  CAS  PubMed  Google Scholar 

  10. Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668–76.

    Article  CAS  PubMed  Google Scholar 

  11. Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR. Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst. 2008;13(2):122–35.

    Article  PubMed  Google Scholar 

  12. Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci. 2002;22(8):3052–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goodrum JF, Earnhardt T, Goines N, Bouldin TW. Fate of myelin lipids during degeneration and regeneration of peripheral nerve: an autoradiographic study. J Neurosci. 1994;14(1):357–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stoll G, Griffin JW, Li CY, Trapp BD. Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol. 1989;18(5):671–83.

    Article  CAS  PubMed  Google Scholar 

  15. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuhlmann T, Bitsch A, Stadelmann C, Siebert H, Bruck W. Macrophages are eliminated from the injured peripheral nerve via local apoptosis and circulation to regional lymph nodes and the spleen. J Neurosci. 2001;21(10):3401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richard L, Topilko P, Magy L, Decouvelaere AV, Charnay P, Funalot B, et al. Endoneurial fibroblast-like cells. J Neuropathol Exp Neurol. 2012;71(11):938–47.

    Article  CAS  PubMed  Google Scholar 

  18. Schroder JM. Altered ratio between axon diameter and myelin sheath thickness in regenerated nerve fibers. Brain Res. 1972;45(1):49–65.

    Article  CAS  PubMed  Google Scholar 

  19. Holahan MRA. Shift from a pivotal to supporting role for the growth-associated protein (GAP-43) in the coordination of axonal structural and functional plasticity. Front Cell Neurosci. 2017;11:266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tetzlaff W, Alexander SW, Miller FD, Bisby MA. Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci. 1991;11(8):2528–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slack JR, Hopkins WG, Pockett S. Evidence for a motor nerve growth factor. Muscle Nerve. 1983;6(4):243–52.

    Article  CAS  PubMed  Google Scholar 

  22. Hoke A. Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol. 2006;2(8):448–54.

    Article  CAS  PubMed  Google Scholar 

  23. Araki T, Milbrandt J. Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron. 1996;17(2):353–61.

    Article  CAS  PubMed  Google Scholar 

  24. Bunge RP, Bunge MB, Eldridge CF. Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci. 1986;9:305–28.

    Article  CAS  PubMed  Google Scholar 

  25. Sunderland S, Bradley KC. Endoneurial tube shrinkage in the distal segment of a severed nerve. J Comp Neurol. 1950;93(3):411–20.

    Article  CAS  PubMed  Google Scholar 

  26. Dodd J, Jessell TM. Axon guidance and the patterning of neuronal projections in vertebrates. Science. 1988;242(4879):692–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gundersen RW, Barrett JN. Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol. 1980;87(3 Pt 1):546–54.

    Article  CAS  PubMed  Google Scholar 

  28. Hobson MI, Green CJ, Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat. 2000;197(Pt 4):591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci. 1995;15(5 Pt 2):3886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Akassoglou K, Kombrinck KW, Degen JL, Strickland S. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol. 2000;149(5):1157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pittman RN. Release of plasminogen activator and a calcium-dependent metalloprotease from cultured sympathetic and sensory neurons. Dev Biol. 1985;110(1):91–101.

    Article  CAS  PubMed  Google Scholar 

  32. Joshi AR, Bobylev I, Zhang G, Sheikh KA, Lehmann HC. Inhibition of rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves. Exp Neurol. 2015;263:28–38.

    Article  CAS  PubMed  Google Scholar 

  33. Hoke A, Redett R, Hameed H, Jari R, Zhou C, Li ZB, et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci. 2006;26(38):9646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27(3):277–324.

    Article  CAS  PubMed  Google Scholar 

  35. Nichols CM, Brenner MJ, Fox IK, Tung TH, Hunter DA, Rickman SR, et al. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol. 2004;190(2):347–55.

    Article  PubMed  Google Scholar 

  36. Kawamura DH, Johnson PJ, Moore AM, Magill CK, Hunter DA, Ray WZ, et al. Matching of motor-sensory modality in the rodent femoral nerve model shows no enhanced effect on peripheral nerve regeneration. Exp Neurol. 2010;223(2):496–504.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brushart TM. Motor axons preferentially reinnervate motor pathways. J Neurosci. 1993;13(6):2730–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Redett R, Jari R, Crawford T, Chen YG, Rohde C, Brushart TM. Peripheral pathways regulate motoneuron collateral dynamics. J Neurosci. 2005;25(41):9406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sulaiman OA, Gordon T. Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia. 2000;32(3):234–46.

    Article  CAS  PubMed  Google Scholar 

  40. Zuo J, Hernandez YJ, Muir D. Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury. J Neurobiol. 1998;34(1):41–54.

    Article  CAS  PubMed  Google Scholar 

  41. Hoke A, Gordon T, Zochodne DW, Sulaiman OA. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol. 2002;173(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  42. Ide C. Peripheral nerve regeneration. Neurosci Res. 1996;25(2):101–21.

    Article  CAS  PubMed  Google Scholar 

  43. Saheb-Al-Zamani M, Yan Y, Farber SJ, Hunter DA, Newton P, Wood MD, et al. Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Exp Neurol. 2013;247C:165–77.

    Article  CAS  Google Scholar 

  44. Ma CH, Omura T, Cobos EJ, Latremoliere A, Ghasemlou N, Brenner GJ, et al. Accelerating axonal growth promotes motor recovery after peripheral nerve injury in mice. J Clin Invest. 2011;121(11):4332–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ashley Z, Sutherland H, Lanmuller H, Russold MF, Unger E, Bijak M, et al. Atrophy, but not necrosis, in rabbit skeletal muscle denervated for periods up to one year. Am J Physiol Cell Physiol. 2007;292(1):C440–51.

    Article  CAS  PubMed  Google Scholar 

  46. Willand MP, Lopez JP, de Bruin H, Fahnestock M, Holmes M, New System BJRA. Paradigm for chronic stimulation of Denervated rat muscle. J Med Biol Eng. 2011;31(2):87–92.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dow DE, Cederna PS, Hassett CA, Kostrominova TY, Faulkner JA, Dennis RG. Number of contractions to maintain mass and force of a denervated rat muscle. Muscle Nerve. 2004;30(1):77–86.

    Article  PubMed  Google Scholar 

  48. Ashley Z, Salmons S, Boncompagni S, Protasi F, Russold M, Lanmuller H, et al. Effects of chronic electrical stimulation on long-term denervated muscles of the rabbit hind limb. J Muscle Res Cell Motil. 2007;28(4–5):203–17.

    Article  PubMed  Google Scholar 

  49. Aird RB, Naffziger HC. The pathology of human striated muscle following denervation. J Neurosurg. 1953;10(3):216–27.

    Article  CAS  PubMed  Google Scholar 

  50. Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE. Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve. 2005;31(3):283–300.

    Article  CAS  PubMed  Google Scholar 

  51. Lien SC, Cederna PS, Kuzon WM Jr. Optimizing skeletal muscle reinnervation with nerve transfer. Hand Clin. 2008;24(4):445–54. vii

    Article  PubMed  Google Scholar 

  52. Cederna PS, Youssef MK, Asato H, Urbanchek MG, Kuzon WM Jr. Skeletal muscle reinnervation by reduced axonal numbers results in whole muscle force deficits. Plast Reconstr Surg. 2000;105(6):2003–9. discussion 10-1

    Article  CAS  PubMed  Google Scholar 

  53. Anzil AP, Wernig A. Muscle fibre loss and reinnervation after long-term denervation. J Neurocytol. 1989;18(6):833–45.

    Article  CAS  PubMed  Google Scholar 

  54. Ontell M. Muscle satellite cells: a validated technique for light microscopic identification and a quantitative study of changes in their population following denervation. Anat Rec. 1974;178(2):211–27.

    Article  CAS  PubMed  Google Scholar 

  55. Schultz E. Changes in the satellite cells of growing muscle following denervation. Anat Rec. 1978;190(2):299–311.

    Article  CAS  PubMed  Google Scholar 

  56. Moss F, LeBlond C. Satellite cells as a source of nuclei in muscles of growing rats. Anat Rec. 1971;170:421–36.

    Article  CAS  PubMed  Google Scholar 

  57. Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat. 2003;203(1):89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kobayashi J, Mackinnon SE, Watanabe O, Ball DJ, Gu XM, Hunter DA, et al. The effect of duration of muscle denervation on functional recovery in the rat model. Muscle Nerve. 1997;20(7):858–66.

    Article  CAS  PubMed  Google Scholar 

  59. Gulati AK. Restoration of denervated skeletal muscle transplants after reinnervation in rats. Restor Neurol Neurosci. 1990;2(1):23–9.

    CAS  PubMed  Google Scholar 

  60. Wei FC, Carver N, Lee YH, Chuang DC, Cheng SL. Sensory recovery and Meissner corpuscle number after toe-to-hand transplantation. Plast Reconstr Surg. 2000;105(7):2405–11.

    Article  CAS  PubMed  Google Scholar 

  61. Jabaley ME, Burns JE, Orcutt BS, Bryant M. Comparison of histologic and functional recovery after peripheral nerve repair. J Hand Surg Am. 1976;1(2):119–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Isaacs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isaacs, J.E., Lamont, S.M. (2021). Biology of Nerve Injury. In: Shin, A.Y., Pulos, N. (eds) Operative Brachial Plexus Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-69517-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69517-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69516-3

  • Online ISBN: 978-3-030-69517-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics