Skip to main content

Nanomaterials Causing Cellular Toxicity and Genotoxicity

  • Chapter
  • First Online:
Nanotoxicology and Nanoecotoxicology Vol. 2

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 67))

Abstract

Nanotechnology has become one of the fastest developing fields of science and engineering in the World. Nanomaterials that play a crucial role in nanotechnology are increasingly used in a broad range of areas including automotive, biomedical, cosmetics, defense, energy, and electronics. Nanomaterials are used in a wide variety of products due to their unique chemical, biological and physical properties. The increase in the production and use of nanomaterials could lead in further exposure to humans, animals, and the environment. Therefore, understanding the toxicity of nanomaterials and their potential risks is urgently needed. Nanomaterial toxicity has been evaluated in various studies, but the adverse poisoning effects on target organs are still very limited. This chapter presents an overview of the applications of nanomaterials, including both metal-based and non-metal-based. Furthermore, it provides an overview of the mechanisms of cell toxicity and genotoxicity. Finally, the potential cell toxicity and genotoxicity associated with different types of nanomaterials are presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain S, Schlager J, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410. https://doi.org/10.1016/j.taap.2008.09.015

    Article  CAS  Google Scholar 

  • Ahamed M, AlSalhi M, Siddiqui M (2010a) Silver nanoparticle applications and human health. Clin Chim Acta 411(23–24):1841–1848. https://doi.org/10.1016/j.cca.2010.08.016

    Article  CAS  Google Scholar 

  • Ahamed M, Siddiqui M, Akhtar M, Ahmad I, Pant A, Alhadlaq H (2010b) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396(2):578–583. https://doi.org/10.1016/j.bbrc.2010.04.156

    Article  CAS  Google Scholar 

  • Aitken R, Chaudhry M, Boxall A, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56(5):300–306. https://doi.org/10.1093/occmed/kql051

    Article  CAS  Google Scholar 

  • Alshatwi AA, Vaiyapuri Subbarayan P, Ramesh E, Al-Hazzani AA, Alsaif MA, Alwarthan AA (2012) Al2O3 nanoparticles induce mitochondria-mediated cell death and upregulate the expression of signaling genes in human mesenchymal stem cells. J Biochem Mol Toxicol 26(11):469–476. https://doi.org/10.1002/jbt.21448

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier H, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468. https://doi.org/10.1016/j.scitotenv.2008.10.053

    Article  CAS  Google Scholar 

  • Aschberger K, Johnston H, Stone V, Aitken R, Tran C, Hankin S et al (2010) Review of fullerene toxicity and exposure–appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58(3):455–473. https://doi.org/10.1016/j.yrtph.2010.08.017

    Article  CAS  Google Scholar 

  • Azmi M, Shad K (2017) Role of nanostructure molecules in enhancing the bioavailability of oral drugs. Nanostruct Novel Ther. https://doi.org/10.1016/B978-0-323-46142-9.00014-1

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. https://doi.org/10.7508/ibj.2016.01.001

  • Barabadi H, Najafi M, Samadian H, Azarnezhad A, Vahidi H, Mahjoub MA et al (2019) A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Medicina 55(8):439

    Article  Google Scholar 

  • Borm P, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Particle Fibre Toxicol 3:11. https://doi.org/10.1186/1743-8977-3-11

    Article  CAS  Google Scholar 

  • Boulton ME, Mitter SK, Rao HV, Dunn WA (2012) Cell death, apoptosis, and autophagy in retinal injury. In: Retina, 5th edn. Elsevier, pp 537–552

    Google Scholar 

  • Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2(4):MR17–MR71. https://doi.org/10.1116/1.2815690

    Article  Google Scholar 

  • Chattopadhyay S, Dash SK, Tripathy S, Das B, Mandal D, Pramanik P, Roy S (2015) Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem Biol Interact 226:58–71. https://doi.org/10.1016/j.cbi.2014.11.016

    Article  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12

    Article  CAS  Google Scholar 

  • Chen L, Yokel RA, Hennig B, Toborek M (2008) Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J NeuroImmune Pharmacol 3(4):286–295. https://doi.org/10.1007/s11481-008-9131-5

    Article  Google Scholar 

  • Cui D, Tian F, Ozkan C, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85. https://doi.org/10.1016/j.toxlet.2004.08.015

    Article  CAS  Google Scholar 

  • Delcroix GJ, Jacquart M, Lemaire L, Sindji L, Franconi F, Le Jeune JJ, Montero-Menei CN (2009) Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Res 1255:18–31. https://doi.org/10.1016/j.brainres.2008.12.013

    Article  CAS  Google Scholar 

  • Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40(23):7394–7401

    Article  CAS  Google Scholar 

  • Doak S, Liu Y, Chen C (2017) Genotoxicity and cancer. In: Adverse effects of engineered nanomaterials, 2nd edn. Elsevier, pp 423–445

    Google Scholar 

  • Du J, Wang S, You H, Zhao X (2013) Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36(2):451–462. https://doi.org/10.1016/j.etap.2013.05.007

    Article  CAS  Google Scholar 

  • Dube PN, Bule SS, Ushir YV, Kumbhare MR, Dighe PR (2015) Synthesis of novel 5-methyl pyrazol-3-one derivatives and their in vitro cytotoxic evaluation. Med Chem Res 24(3):1070–1076

    Article  CAS  Google Scholar 

  • ehs.mit.edu (2016) Nanomaterials toxicity. Available from: https://ehs.mit.edu/site/nanomaterials-toxicity

  • Emam AN, Girgis E, Khalil WK, Mohamed MB (2014) Toxicity of plasmonic nanomaterials and their hybrid nanocomposites. In: Advances in molecular toxicology, vol 8. Elsevier, pp 173–202

    Google Scholar 

  • EPA, U (2005) Environmental Protection Agency Nanotechnology White Paper: External Review Draft. 2005, EPA

    Google Scholar 

  • EPA, U (2017) Technical fact sheet – nanomaterials

    Google Scholar 

  • Fard J, Jafari S, Eghbal M (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5(4):447–454. https://doi.org/10.15171/apb.2015.061

    Article  CAS  Google Scholar 

  • Farré M, Barceló D (2012) Introduction to the analysis and risk of nanomaterials in environmental and food samples. In : Comprehensive analytical chemistry, 1st edn, vol 59. Elsevier, pp 1–32

    Google Scholar 

  • Foldbjerg R, Dang D, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85(7):743–750. https://doi.org/10.1007/s00204-010-0545-5

    Article  CAS  Google Scholar 

  • Fu P, Xia Q, Hwang H, Ray P, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75. https://doi.org/10.1016/j.jfda.2014.01.005

    Article  CAS  Google Scholar 

  • Ganguly P, Breen A, Pillai S (2018) Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater Sci Eng 4(7):2237–2275. https://doi.org/10.1021/acsbiomaterials.8b00068

    Article  CAS  Google Scholar 

  • Gatoo M, Naseem S, Arfat M, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:498420. https://doi.org/10.1155/2014/498420

    Article  CAS  Google Scholar 

  • Gliga A, Skoglund S, Wallinder I, Fadeel B, Karlsson H (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle Fibre Toxicol 11(1):11. https://doi.org/10.1186/1743-8977-11-11

    Article  CAS  Google Scholar 

  • Gonzalez L, Lison D, Kirsch-Volders M (2009) Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology 2(4):252–273. https://doi.org/10.1080/17435390802464986

    Article  Google Scholar 

  • Guo F, Ma N, Horibe Y, Kawanishi S, Murata M, Hiraku Y (2012) Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells. Toxicol Appl Pharmacol 260(2):183–192. https://doi.org/10.1016/j.taap.2012.02.010

    Article  CAS  Google Scholar 

  • Gurunathan S, Kim J (2016) Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomedicine 11:1927. https://doi.org/10.2147/IJN.S105264

    Article  CAS  Google Scholar 

  • He X, Aker W, Fu P, Hwang H (2015) Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: a review and perspective. Environ Sci Nano 2(6):564–582. https://doi.org/10.1039/c5en00094g

    Article  CAS  Google Scholar 

  • Hsiao I, Huang Y (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci Total Environ 409(7):1219–1228. https://doi.org/10.1016/j.scitotenv.2010.12.033

    Article  CAS  Google Scholar 

  • Huang G, Wang C, Tang H, Huang Y, Yang J (2006) ZnO nanoparticle-modified infrared internal reflection elements for selective detection of volatile organic compounds. Anal Chem 78(7):2397–2404. https://doi.org/10.1021/ac051930+

    Article  CAS  Google Scholar 

  • Huang C, Aronstam R, Chen D, Huang Y (2010) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in Vitro 24(1):45–55. https://doi.org/10.1016/j.tiv.2009.09.007

    Article  CAS  Google Scholar 

  • Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Smith Korsholm K et al (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-Mutaâ„¢ Mouse lung epithelial cells. Environ Mol Mutagen 49(6):476–487

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan Y, Dufresne A, Danquah M (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  CAS  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(12):2699–2711. https://doi.org/10.1080/10934520600966177

    Article  CAS  Google Scholar 

  • Kaphle A, Navya PN, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16(1):43–58. https://doi.org/10.1007/s10311-017-0662-y

    Article  CAS  Google Scholar 

  • Kumar M, Sameti M, Mohapatra S, Kong X, Lockey R, Bakowsky U et al (2004) Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. J Nanosci Nanotechnol 4(7):876–881. https://doi.org/10.1166/jnn.2004.120

    Article  CAS  Google Scholar 

  • Lam C, James J, McCluskey R, Arepalli S, Hunter R (2008) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217. https://doi.org/10.1080/10408440600570233

    Article  CAS  Google Scholar 

  • Lee Y, Cheng F, Chiu H, Tsai J, Fang C, Chen C, Wang Y (2014) Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35(16):4706–4715. https://doi.org/10.1016/j.biomaterials.2014.02.021

    Article  CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49. https://doi.org/10.1002/smll.200700595

    Article  CAS  Google Scholar 

  • Lin W, Huang Y-w, Zhou X-D, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217(3):252–259

    Article  CAS  Google Scholar 

  • Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9-10):1533–1545. https://doi.org/10.1002/smll.201201531

    Article  CAS  Google Scholar 

  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278. https://doi.org/10.3109/17435390.2013.773464

    Article  CAS  Google Scholar 

  • Ma-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T et al (2013) Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Particle and fibre toxicology 10(1):23. https://doi.org/10.1186/1743-8977-10-23

  • Manke A, Liying W, Yon R (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916. https://doi.org/10.1155/2013/942916

    Article  CAS  Google Scholar 

  • Matthew Hull DB (2014) Nanotechnology environmental health and safety. Risks, regulation, and management

    Google Scholar 

  • McWilliams A (2016) The maturing nanotechnology market: products and applications. Wellesley, BCC Research

    Google Scholar 

  • Monteiro-Riviere N, Zhang L (2009) Assessment of quantum dot penetration into skin in different species under different mechanical actions. In: Nanomaterials: risks and benefits. Springer, pp 43–52

    Google Scholar 

  • Mortensen LJ, Oberdörster G, Pentland AP, DeLouise LA (2008) In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett 8(9):2779–2787

    Article  CAS  Google Scholar 

  • Mulenos MR, Liu J, Lujan H, Guo B, Lichtfouse E, Sharma VK, Sayes CM (2020) Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: evidence for the low toxicity of nanoparticles. Environ Chem Lett:1–10

    Google Scholar 

  • Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R et al (2007) Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett 7(11):3452–3461

    Article  CAS  Google Scholar 

  • Naqvi S, Samim M, Abdin M, Ahmed FJ, Maitra A, Prashant C, Dinda AK (2010) Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomedicine 5:983–989. https://doi.org/10.2147/IJN.S13244

    Article  CAS  Google Scholar 

  • Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH (2017) Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine 12:1621. https://doi.org/10.2147/IJN.S124403

    Article  CAS  Google Scholar 

  • Niwa Y, Iwai N (2006) Genotoxicity in cell lines induced by chronic exposure to water-soluble fullerenes using micronucleus test. Environ Health Prev Med 11(6):292–297

    Article  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  Google Scholar 

  • Park E, Park K (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184(1):18–25. https://doi.org/10.1016/j.toxlet.2008.10.012

    Article  CAS  Google Scholar 

  • Park M, Neigh A, Vermeulen J, de la Fonteyne L, Verharen H, Briedé J et al (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32(36):9810–9817. https://doi.org/10.1016/j.biomaterials.2011.08.085

    Article  CAS  Google Scholar 

  • Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L’Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle Fibre Toxicol 8(1):1. https://doi.org/10.1186/1743-8977-8-10

    Article  CAS  Google Scholar 

  • Radziun E, WilczyÅ„ska JD, Książek I, Nowak K, Anuszewska E, Kunicki A et al (2011) Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol in Vitro 25(8):1694–1700

    Article  CAS  Google Scholar 

  • Ray S, Jana N (2017) Toxicology and biosafety of carbon nanomaterials. In: Carbon nanomaterials for biological and medical applications, pp 205–229

    Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(1):1–35. https://doi.org/10.1080/10590500802708267

    Article  CAS  Google Scholar 

  • Rouse JG, Haslauer CM, Loboa EG, Monteiro-Riviere NA (2008) Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles. Toxicol in Vitro 22(2):491–497

    Article  CAS  Google Scholar 

  • Sahu S, Hayes A (2017) Toxicity of nanomaterials found in human environment: a literature review. Toxicol Res Appl 1:2397847317726352. https://doi.org/10.1177/2397847317726352

    Article  Google Scholar 

  • Sahu D, Kannan G, Vijayaraghavan R (2014) Carbon black particle exhibits size dependent toxicity in human monocytes. Int J Inflamm. https://doi.org/10.1155/2014/827019

  • Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res Int 22(6):4122–4143. https://doi.org/10.1007/s11356-014-3994-1

    Article  Google Scholar 

  • Sandeep KV (2013) Nanomaterials-based health care and bioanalytical applications: trend and prospects. J Nanomater Mol Nanotechnol. https://doi.org/10.4172/2324-8777.1000109

  • Schins R, Knaapen A (2007) Genotoxicity of poorly soluble particles. Inhal Toxicol 19(suppl 1):189–198. https://doi.org/10.1080/08958370701496202

    Article  CAS  Google Scholar 

  • Senapati VA, Kumar A (2018) ZnO nanoparticles dissolution, penetration and toxicity in human epidermal cells. Influence of pH. Environ Chem Lett 16(3):1129–1135

    Article  CAS  Google Scholar 

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Particle Fibre Toxicol. https://doi.org/10.1186/1743-8977-10-15

  • Shvedova A, Pietroiusti A, Fadeel B, Kagan V (2012) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261(2):121–133. https://doi.org/10.1016/j.taap.2012.03.023

    Article  CAS  Google Scholar 

  • Slowing I, Vivero-Escoto J, Wu C, Lin V (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. https://doi.org/10.1016/j.addr.2008.03.012

    Article  CAS  Google Scholar 

  • Srikanth M (2012) In vitro cytotoxicity tests of nanomaterials on 3T3 and l929 cancerous cells. Doctoral dissertation, Wichita State University

    Google Scholar 

  • Srivastava V, Gusain D, Sharma Y (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54(24):6209–6233. https://doi.org/10.1021/acs.iecr.5b01610

    Article  CAS  Google Scholar 

  • Stark W, Stoessel P, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44(16):5793–5805. https://doi.org/10.1039/C4CS00362D

    Article  CAS  Google Scholar 

  • Su H, Qian X, Gu Z, Xu Z, Lou H, Bian X, …, Li L (2020) Cu(OH)2 nanorods undergo sulfidation in water: in situ formation of CuO nanorods as intermediates and enhanced toxicity to Escherichia coli. Environ Chem Lett:1–8

    Google Scholar 

  • Tan K, Barhoum A, Pan S, Danquah M (2018) Risks and toxicity of nanoparticles and nanostructured materials. In: Emerging applications of nanoparticles and architecture nanostructures, pp 121–139

    Google Scholar 

  • Tang J, Xiong L, Wang S, Wang J, Liu L, Li J et al (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932

    Article  CAS  Google Scholar 

  • Thota S, Crans DC (2018) Metal nanoparticles: synthesis and applications in pharmaceutical sciences

    Google Scholar 

  • Tran TH, Nguyen VT (2014) Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: a brief review. International scholarly research notices 2014

    Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl R (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res:0008-5472. CAN-09-2496. https://doi.org/10.1158/0008-5472.CAN-09-2496

  • Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, García-García M, Morales JDM, Bogdanchikova N, Huerta-Saquero A (2017) Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol Lett 276:11–20. https://doi.org/10.1016/j.toxlet.2017.05.007

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250. https://doi.org/10.1021/es204168d

    Article  CAS  Google Scholar 

  • WHO (2013) Nanotechnology and human health: scientific evidence and risk governance

    Google Scholar 

  • Wick P, Manser P, Limbach L, Dettlaff-Weglikowska U, Krumeich F, Roth S et al (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131. https://doi.org/10.1016/j.toxlet.2006.08.019

    Article  CAS  Google Scholar 

  • Wong B, Yoong S, Jagusiak A, Panczyk T, Ho H, Ang W, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65(15):1964–2015. https://doi.org/10.1016/j.addr.2013.08.005

    Article  CAS  Google Scholar 

  • Wu T, Tang M (2018) Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 38(1):25–40. https://doi.org/10.1002/jat.3499

    Article  CAS  Google Scholar 

  • Yin Z, Wu L, Yang H, Su Y (2013) Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys 15(14):4844–4858. https://doi.org/10.1039/C3CP43938K

    Article  Google Scholar 

  • Zhang LW, William WY, Colvin VL, Monteiro-Riviere NA (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228(2):200–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eylem Asmatulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sengul, A.B., Asmatulu, E. (2021). Nanomaterials Causing Cellular Toxicity and Genotoxicity. In: Kumar, V., Guleria, P., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanotoxicology and Nanoecotoxicology Vol. 2 . Environmental Chemistry for a Sustainable World, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-69492-0_11

Download citation

Publish with us

Policies and ethics