Skip to main content

Time Discretization in Pedestrian Dynamics Simulations by Discrete-Continuous Model

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2020)

Abstract

A discretization of time in computer simulation of pedestrian movement is considered. Time step is very influencing on computational performance. But not only quick calculations is a criterion. The other one is a confidence to a simulation result. From both aspects, the discrete-continuous model SigmaEva is considered in the paper. It is shown that low and high time steps are not reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this discrete-continuous model we took inspiration from our previously presented stochastic CA FF model [10, 27].

  2. 2.

    Mainly with value > 0.9.

References

  1. Kirik, E., Malyshev, A., Vitova, T., Popel, E., Kharlamov, E.: Pedestrian movement simulation for stadiums design. In: IOP Conference Series: Materials Science and Engineering, vol. 456, p. 012074 (2018)

    Google Scholar 

  2. Ronchi, E., Nieto Uriz, F., Criel, X., Reilly, P.: Modelling large-scale evacuation of music festivals. Case Stud. Fire Sa. 5, 11–19 (2016)

    Article  Google Scholar 

  3. Shimura, K., Khan, S.D., Bandini, S., Nishinari, K.: Simulation and evaluation of spiral movement of pedestrians: towards the Tawaf simulator. J. Cell. Autom. 11(4), 275–284 (2016)

    MathSciNet  Google Scholar 

  4. Mitsopoulou, M., Dourvas, N., Georgoudas, I.G., Sirakoulis, G.C.: Cellular automata model for crowd behavior management in airports. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12044, pp. 445–456. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43222-5_39

    Chapter  Google Scholar 

  5. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  6. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82, 046111 (2010)

    Article  Google Scholar 

  7. Zeng, W., Nakamura, H., Chen, P.: A modified social force model for pedestrian behavior simulation at signalized crosswalks. Soc. Behav. Sci. 138(14), 521–530 (2014)

    Article  Google Scholar 

  8. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B 35, 293–312 (2001)

    Article  Google Scholar 

  9. Kirchner, A., Klupfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J. Stat. Mech: Theory Exp. 10, 10011 (2004)

    Article  Google Scholar 

  10. Kirik, E., Vitova, T.: On formal presentation of update rules, density estimate and using floor fields in CA FF pedestrian dynamics model SIgMA.CA. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 435–445. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_43

    Chapter  Google Scholar 

  11. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst. E87–D, 726–732 (2004)

    Google Scholar 

  12. Seitz, M.J., Koster, G.: Natural discretization of pedestrian movement in continuous space. Phys. Rev. E 86(4), 046108 (2012)

    Article  Google Scholar 

  13. Zeng, Y., Song, W., Huo, F., Vizzari, G.: Modeling evacuation dynamics on stairs by an extended optimal steps model. Simul. Model. Pract. Theory 84, 177–189 (2018)

    Article  Google Scholar 

  14. Baglietto, G., Parisi, D.R.: Continuous-space automaton model for pedestrian dynamics. Phys. Rev. E 83, 056117 (2011)

    Article  Google Scholar 

  15. Kirik, E., Yurgel’yan, T., Malyshev, A.: On discrete-continuous stochastic floor field pedestrian dynamics model SIgMA.DC. In: Proceedings of the International conference “Emergency evacuation of people from buildings - EMEVAC”, pp. 155–161. Belstudio, Warsaw (2011)

    Google Scholar 

  16. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspried cellular automaton model for pedestrian dynamics. Phys. A 312, 260–276 (2002)

    Article  Google Scholar 

  17. Bandini, S., Rubagotti, F., Vizzari, G., Shimura, K.: A cellular automata based model for pedestrian and group dynamics: motivations and first experiments. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 125–139. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0_11

    Chapter  Google Scholar 

  18. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  19. Seyfried, A., Steffen, B., Lippert, T.: Basics of modelling the pedestrian flow. Phys. A 368(1), 232–238 (2006)

    Article  Google Scholar 

  20. Kirik, E., Malyshev, A., Popel, E.: Fundamental diagram as a model input: direct movement equation of pedestrian dynamics. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 691–702. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02447-9_58

    Chapter  Google Scholar 

  21. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 12, 393–405 (2009)

    Article  Google Scholar 

  22. Kholshevnikov, V.V., Shields, T.M., Boyce, K.E., Samoshin, D.A.: Recent developments in pedestrian flow theory and research in Russia. Fire Saf. J. 43(2), 108–118 (2008)

    Article  Google Scholar 

  23. Weidmann, U.: Transporttechnik der Fussgänger. Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung). IVT, Institut für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau, Zürich (1992)

    Google Scholar 

  24. Nelson, H.E., Mowrer, F.W.: Emergency movement. The SFPE Handbook of Fire Protection Engineering, pp. 3–367 -3-380. National Fire Protection Association (2002)

    Google Scholar 

  25. Kirik, E., Vitova, T., Malyshev, A., Popel, E.: A conjunction of the discrete-continuous pedestrian dynamics model SigmaEva with fundamental diagrams. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds.) PPAM 2019. LNCS, vol. 12044, pp. 457–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43222-5_40

    Chapter  Google Scholar 

  26. Schadschneider, A., Seyfried, A.: Validation of CA models of pedestrian dynamics with fundamental diagrams. Cybern. Syst. 40(5), 367–389 (2009)

    Article  Google Scholar 

  27. Kirik, E., Yurgel’yan, T., Krouglov, D.: On realizing the shortest time strategy in a CA FF pedestrian dynamics model. Cybern. Syst. 42(1), 1–15 (2011)

    Article  Google Scholar 

  28. Kirik, E., Vitova, T., Malyshev, A.: Turns of different angles and discrete-continuous pedestrian dynamics model. Nat. Comput. 18(4), 875–884 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Kirik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirik, E., Vitova, T., Malyshev, A. (2021). Time Discretization in Pedestrian Dynamics Simulations by Discrete-Continuous Model. In: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds) Cellular Automata. ACRI 2020. Lecture Notes in Computer Science(), vol 12599. Springer, Cham. https://doi.org/10.1007/978-3-030-69480-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69480-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69479-1

  • Online ISBN: 978-3-030-69480-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics