Skip to main content

SoK: Blockchain Solutions for Forensics

  • Chapter
  • First Online:
Technology Development for Security Practitioners

Abstract

As the digitization of information-intensive processes gains momentum in nowadays, the concern is growing about how to deal with the ever-growing problem of cybercrime. To this end, law enforcement officials and security firms use sophisticated digital forensics techniques for analysing and investigating cybercrimes. However, multi-jurisdictional mandates, interoperability issues, the massive amount of evidence gathered (multimedia, text, etc.) and multiple stakeholders involved (law enforcement agencies, security firms, etc.) are just a few among the various challenges that hinder the adoption and implementation of sound digital forensics schemes. Blockchain technology has been recently proposed as a viable solution for developing robust digital forensics mechanisms. In this chapter, we provide an overview and classification of the available blockchain-based digital forensic tools, and we further describe their main features. We also offer a thorough analysis of the various benefits and challenges of the symbiotic relationship between blockchain technology and the current digital forensics approaches, as proposed in the available literature. Based on the findings, we identify various research gaps, and we suggest future research directions that are expected to be of significant value both for academics and practitioners in the field of digital forensics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ec.europa.eu/home-affairs/what-we-do/policies/cybercrime/e-evidence_en

  2. 2.

    https://locard.eu/

Bibliography

  1. Al-Khateeb, H., Epiphaniou, G., & Daly, H. (2019). Blockchain for modern digital forensics: The chain-of-custody as a distributed ledger. In Advanced Sciences and Technologies for Security Applications (pp. 149–168).

    Google Scholar 

  2. Atzei, N., Bartoletti, M., & Cimoli, T. (2017). A survey of attacks on ethereum smart contracts (sok). In International Conference on Principles of Security and Trust (pp. 164–186). Berlin: Springer.

    Google Scholar 

  3. Bernal Bernabe, J., Canovas, J. L., Hernandez-Ramos, J. L., Torres Moreno, R., & Skarmeta, A. (2019). Privacy-preserving solutions for blockchain: Review and challenges. IEEE Access, 7, 164908–164940.

    Article  Google Scholar 

  4. Billard, D., & Bartolomei, B. (2019). Digital forensics and privacy-by-design: Example in a Blockchain-based dynamic navigation system. In Annual Privacy Forum (pp. 151–160). Cham: Springer.

    Google Scholar 

  5. Billard, D. (2018). Weighted forensics evidence using blockchain. In Proceedings of the 2018 International Conference on Computing and Data Engineering (pp. 57–61). New York: ICCDE 2018, ACM. https://doi.org/10.1145/3219788.3219792.

    Chapter  Google Scholar 

  6. Bonomi, S., Casini, M., & Ciccotelli, C. (2020). B-coc: A blockchain-based chain of custody for evidences management in digital forensics. In OpenAccess Series in Informatics, 71.

    Google Scholar 

  7. Brotsis, S., Kolokotronis, N., Limniotis, K., Shiaeles, S., Kavallieros, D., Bellini, E., & Pavue, C. (2019). Blockchain solutions for forensic evidence preservation in iot environments. In 2019 IEEE Conference on Network Softwarization (NetSoft) (pp. 110–114). IEEE.

    Google Scholar 

  8. Casino, F., Dasaklis, T. K., & Patsakis, C. (2018). A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telematics and Informatics, 36, 55–81.

    Article  Google Scholar 

  9. Cebe, M., Erdin, E., Akkaya, K., Aksu, H., & Uluagac, S. (2018). Block4Forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles. IEEE Communications Magazine, 56(10), 50–57.

    Article  Google Scholar 

  10. Chernyshev, M., Zeadally, S., & Baig, Z. (2019). Healthcare data breaches: Implications for digital forensic readiness. Journal of Medical Systems, 43(1), 1–12.

    Article  Google Scholar 

  11. Chowdhury, M. J. M., Ferdous, M. S., Biswas, K., Chowdhury, N., Kayes, A. S. M., Alazab, M., & Watters, P. (2019). A comparative analysis of distributed ledger technology platforms. IEEE Access, 7, 167930–167943.

    Article  Google Scholar 

  12. Dasaklis, T., et al. (2019). A framework for supply chain traceability based on blockchain tokens. In International Conference on Business Process Management. Cham: Springer.

    Google Scholar 

  13. Duy, P., Do Hoang, H., Thu Hien, D., Ba Khanh, N., & Pham, V.H. (2019). Sdnlog-foren: Ensuring the integrity and tamper resistance of log files for sdn forensics using blockchain. In: Proceedings - 2019 6th NAFOSTED Conference on Information and Computer Science, NICS 2019. pp. 416–421.

    Google Scholar 

  14. Gopalan, S. H., Suba, S. A., Ashmithashree, C., Gayathri, A., & Jebin Andrews, V. (2019). Digital forensics using blockchain. International Journal of Recent Technology and Engineering, 8(2 Special Issue 11), 182–184.

    Google Scholar 

  15. Gu, J., Sun, B., Du, X., Wang, J., Zhuang, Y., & Wang, Z. (2018). Consortium blockchain-based malware detection in mobile devices. IEEE Access, 6, 12118–12128.

    Article  Google Scholar 

  16. Homayoun, S., Dehghantanha, A., Parizi, R. M., & Choo, K. K. R. (2019). A blockchain- based framework for detecting malicious mobile applications in App stores. In 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE) (pp. 1–4). IEEE.

    Google Scholar 

  17. Homoliak, I., Venugopalan, S., Hum, Q., Reijsbergen, D., Schumi, R., & Szalachowski, P. (2019). The security reference architecture for blockchains: Towards a standardized model for studying vulnerabilities, threats, and defenses. arXiv. https://doi.org/10.1109/COMST.2020.3033665.

  18. Hossain, M. M., Hasan, R., & Zawoad, S. (2018). Probe-IoT: A public digital ledger based forensic investigation framework for IoT. In INFOCOM Workshops (pp. 1–2).

    Google Scholar 

  19. Karie, N. M., & Venter, H. S. (2015). Taxonomy of challenges for digital forensics. Journal of Forensic Sciences, 60(4), 885–893.

    Article  Google Scholar 

  20. Kerr, M., Han, F. V., & Schyndel, R. (2018). A blockchain implementation for the cataloguing of cctv video evidence. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–6).

    Google Scholar 

  21. Kevin, D., & David, B. (2019). HACIT2: A privacy preserving, region based and blockchain application for dynamic navigation and forensics in VANET. In International Conference on Ad Hoc Networks (pp. 225–236). Cham: Springer.

    Chapter  Google Scholar 

  22. Kotsiuba, I., Velykzhanin, A., Biloborodov, O., Skarga-Bandurova, I., Biloborodova, T., Yanovich, Y., & Zhygulin, V. (2018). Blockchain evolution: From bitcoin to forensic in smart grids. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 3100–3106). IEEE.

    Google Scholar 

  23. Le, D. P., Meng, H., Su, L., Yeo, S. L., & Thing, V. (2018). Biff: A blockchain-based iot forensics framework with identity privacy. In TENCON 2018–2018 IEEE Region 10 Conference (pp. 2372–2377). IEEE.

    Google Scholar 

  24. Li, S., Qin, T., & Min, G. (2019). Blockchain-based digital forensics investigation framework in the internet of things and social systems. IEEE Transactions on Computational Social Systems 6(6), 1433–1441.

    Google Scholar 

  25. Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2017). A survey on the security of blockchain systems. Future Generation Computer Systems, 107, 841–853.

    Article  Google Scholar 

  26. Lone, A. H., & Mir, R. N. (2019). Forensic-chain: Blockchain based digital forensics chain of custody with PoC in Hyperledger composer. Digital Investigation, 28, 44–55.

    Article  Google Scholar 

  27. Malamas, V., Dasaklis, T., Kotzanikolaou, P., Burmester, M., & Katsikas, S. (2019). A forensics-by-design management framework for medical devices based on blockchain. In 2019 IEEE World Congress on Services (SERVICES) (Vol. 2642, pp. 35–40). IEEE.

    Google Scholar 

  28. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Manubot.

    Google Scholar 

  29. Patsakis, C., Dellios, K., De Fuentes, J. M., Casino, F., & Solanas, A. (2019). External monitoring changes in vehicle hardware profiles: Enhancing automotive cyber-security. Journal of Hardware and Systems Security, 3(3), 289–303.

    Article  Google Scholar 

  30. Pilli, E. S., Joshi, R. C., & Niyogi, R. (2010). Network forensic frameworks: Survey and re-search challenges. Digital Investigation, 7(1–2), 14–27.

    Article  Google Scholar 

  31. Politou, E., Casino, F., Alepis, E., & Patsakis, C. (2019). Blockchain mutability: Challenges and proposed solutions. IEEE Transactions on Emerging Topics in Computing, 1–1. https://doi.org/10.1109/TETC.2019.2949510.

  32. Politou, E., Alepis, E., & Patsakis, C. (2018). Forgetting personal data and revoking consent under the gdpr: Challenges and proposed solutions. Journal of Cybersecurity, 4(1), tyy001.

    Article  Google Scholar 

  33. Pourvahab, M., & Ekbatanifard, G. (2019): Digital forensics architecture for evidence collection and provenance preservation in iaas cloud environment using sdn and blockchain technology. IEEE Access 7, 153349–153364.

    Google Scholar 

  34. Quick, D., & Choo, K. K. R. (2016). Big forensic data reduction: Digital forensic images and electronic evidence. Cluster Computing, 19(2), 723–740.

    Article  Google Scholar 

  35. Rane, S., & Dixit, A. (2019). BlockSLaaS: Blockchain assisted secure logging-as-a-service for cloud forensics. In International Conference on Security & Privacy (pp. 77–88). Singapore: Springer.

    Google Scholar 

  36. Ricci, J., Baggili, I., & Breitinger, F. (2019). Blockchain-based distributed cloud storage digital forensics: Where’s the beef? IEEE Security and Privacy, 17(1), 34–42.

    Article  Google Scholar 

  37. Ruan, K., Carthy, J., Kechadi, T., & Baggili, I. (2013). Cloud forensics definitions and critical criteria for cloud forensic capability: An overview of survey results. Digital Investigation, 10(1), 34–43.

    Article  Google Scholar 

  38. Ryu, J. H., Sharma, P. K., Jo, J. H., & Park, J. H. (2019). A blockchain-based decentralized efficient investigation framework for IoT digital forensics. Journal of Supercomputing, 75(8), 4372–4387.

    Article  Google Scholar 

  39. Samanta, P., & Jain, S. (2018). E-Witness: Preserve and prove forensic soundness of digital evidence. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking (pp. 832–834). ACM.

    Google Scholar 

  40. Singh, A., Parizi, R. M., Zhang, Q., Choo, K. K. R., & Dehghantanha, A. (2020). Blockchain smart contracts formalization: Approaches and challenges to address vulnerabilities. Computers & Security, 88, 101654.

    Article  Google Scholar 

  41. Tian, Z., Li, M., Qiu, M., Sun, Y., & Su, S. (2019). Block-DEF: A secure digital evidence framework using blockchain. Information Sciences, 491, 151–165.

    Article  Google Scholar 

  42. Weilbach, W. T., & Motara, Y. M. (2019). Distributed ledger technology to support digital evidence integrity verification processes. In International Information Security Conference (pp. 1–15). Cham: Springer.

    Google Scholar 

  43. Xiong, Y., & Du, J. (2019). Electronic evidence preservation model based on blockchain. In Proceedings of the 3rd International Conference on Cryptography, Security and Privacy (pp. 1–5). ACM.

    Google Scholar 

  44. Yousaf, H., Kappos, G., & Meiklejohn, S. (2019). Tracing transactions across cryptocurrency ledgers. In 28th {USENIX} Security Symposium ({USENIX} Security 19) (pp. 837–850).

    Google Scholar 

  45. Zhang, Y., Wu, S., Jin, B., & Du, J. (2017). A blockchain-based process provenance for cloud forensics. In 2017 3rd IEEE International Conference on Computer and Communications (ICCC) (pp. 2470–2473). IEEE.

    Google Scholar 

  46. Zou, R., Lv, X., & Wang, B. (2019). Blockchain-based photo forensics with permissible trans-formations. Computers and Security, 87, 101567.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the European Commission under the Horizon 2020 Programme (H2020), as part of the project LOCARD (https://locard.eu) (Grant Agreement no. 832735).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Dasaklis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasaklis, T.K., Casino, F., Patsakis, C. (2021). SoK: Blockchain Solutions for Forensics. In: Akhgar, B., Kavallieros, D., Sdongos, E. (eds) Technology Development for Security Practitioners. Security Informatics and Law Enforcement. Springer, Cham. https://doi.org/10.1007/978-3-030-69460-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69460-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69459-3

  • Online ISBN: 978-3-030-69460-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics