Skip to main content

State-of-the-Art of Solution-Processed Crystalline Silicon/Organic Heterojunction Solar Cells: Challenges and Future

  • Chapter
  • First Online:
Development of Solar Cells

Abstract

In this chapter, we delineate the present state-of-the-art of solution-processed PEDOT:PSS/n-Si heterojunction solar cells in detail. Here, we discuss the emergence, principle of operation, fabrication process, carrier transport properties, and evolution of the efficiency of the PEDOT:PSS/n-Si heterojunction solar cells. We also discuss with the challenges of the solar cells and propose few design guidelines to further improve the efficiency of the solar cells in future. The SCAPS-1D simulation reveals that the use of n+ CdS or In3Se4 BSF layer which can be deposited by simple solution process enhances the efficiency of the PEDOT:PSS/n-Si heterojunction solar cells to 30.94–35.05% with a higher VOC of 0.89  V. The short-circuit current of the solar cells can be further increased by the use of proper ARC layer on the top of the PEDOT:PSS/n-Si heterojunction solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreani LC, Bozzola A, Kowalczewski P, Liscidini M, Redorici L (2019) Silicon solar cells: toward the efficiency limits. Adv Phys X 4:1548305

    CAS  Google Scholar 

  2. Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576

    CAS  Google Scholar 

  3. Yoshikawa K, Kawasaki H, Yoshida W et al (2017) Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy 2:17032

    CAS  Google Scholar 

  4. Avasthi S, Lee S, Loo Y-L, Sturm JC (2011) Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells. Adv Mater 23:5762–5766

    CAS  PubMed  Google Scholar 

  5. Liu Q, Ono M, Tang Z, Ishikawa R, Ueno K, Shirai H (2012) Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells. Appl Phys Lett 100:183901

    Google Scholar 

  6. Liu Q, Imamura T, Hiate T, Khatri I, Tang Z, Ishikawa R, Ueno K, Shirai H (2013) Optical anisotropy in solvent-modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) and its effect on the photovoltaic performance of crystalline silicon/organic heterojunction solar cells. Appl Phys Lett 102:243902

    Google Scholar 

  7. Devkota R, Liu Q, Ohki T, Hossain J, Ueno K, Shirai H (2016) Solution-processed crystalline silicon double-heterojunction solar cells. Appl Phys Express 9:22301

    Google Scholar 

  8. Zielke D, Pazidis A, Werner F, Schmidt J (2014) Organic-silicon heterojunction solar cells on n-type silicon wafers: the BackPEDOT concept. Sol Energy Mater Sol Cells 131:110–116

    CAS  Google Scholar 

  9. Inganäs O (2011) Avoiding indium. Nat Photonics 5:201–202

    Google Scholar 

  10. Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15:36–49

    Google Scholar 

  11. Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H, Hong BH, Ahn J-H, Lee T-W (2012) Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics 6:105–110

    CAS  Google Scholar 

  12. Mengistie DA, Ibrahem MA, Wang P-C, Chu C-W (2014) Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl Mater Interfaces 6:2292–2299

    CAS  PubMed  Google Scholar 

  13. Ouyang J (2013) Solution-Processed PEDOT:PSS Films with Conductivities as Indium Tin Oxide through a Treatment with Mild and Weak Organic Acids. ACS Appl Mater Interfaces 5:13082–13088

    CAS  PubMed  Google Scholar 

  14. Mukherjee S, Singh R, Gopinathan S, Murugan S, Gawali S, Saha B, Biswas J, Lodha S, Kumar A (2014) Solution-processed poly(3,4-ethylenedioxythiophene) thin films as transparent conductors: effect of p-toluenesulfonic acid in dimethyl sulfoxide. ACS Appl Mater Interfaces 6:17792–17803

    CAS  PubMed  Google Scholar 

  15. Pietsch M, Bashouti MY, Christiansen S (2013) The role of hole transport in hybrid inorganic/organic silicon/poly(3,4-ethylenedioxy-thiophene): poly(styrenesulfonate) heterojunction solar cells. J Phys Chem C 117:9049–9055

    CAS  Google Scholar 

  16. Yin B, Liu Q, Yang L, Wu X, Liu Z, Hua Y, Yin S, Chen Y (2010) Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells. J Nanosci Nanotechnol 10:1934–1938

    CAS  PubMed  Google Scholar 

  17. Yoon S-S, Khang D-Y (2016) Roles of nonionic surfactant additives in PEDOT:PSS thin films. J Phys Chem C 120:29525–29532

    CAS  Google Scholar 

  18. Thomas JP, Leung KT (2014) Defect-minimized PEDOT:PSS/planar-Si solar cell with very high efficiency. Adv Funct Mater 24:4978–4985

    CAS  Google Scholar 

  19. He J, Gao P, Liao M, Yang X, Ying Z, Zhou S, Ye J, Cui Y (2015) Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression. ACS Nano 9:6522–6531

    CAS  PubMed  Google Scholar 

  20. Liu Q, Ishikawa R, Funada S, Ohki T, Ueno K, Shirai H (2015) Highly efficient solution-processed poly(3,4-ethylenedio-xythiophene): poly(styrenesulfonate)/crystalline–silicon heterojunction solar cells with improved light-induced stability. Adv Energy Mater 5:1500744

    Google Scholar 

  21. Hossain J, Liu Q, Miura T, Kasahara K, Harada D, Ishikawa R, Ueno K, Shirai H (2016) Nafion-modified PEDOT:PSS as a transparent hole-transporting layer for high-performance crystalline-Si/organic heterojunction solar cells with improved light soaking stability. ACS Appl Mater Interfaces 8:31926–31934

    CAS  PubMed  Google Scholar 

  22. Funda S, Ohki T, Liu Q, Hossain J, Ishimaru Y, Ueno K, Shirai H (2016) Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells. J Appl Phys 120:033103

    Google Scholar 

  23. He J, Gao P, Yang Z, Yu J, Yu W, Zhang Y, Sheng J, Ye J, Amine JC, Cui Y (2017) Silicon/organic hybrid solar cells with 16.2% efficiency and improved stability by formation of conformal heterojunction coating and moisture-resistant capping layer. Adv Mater 29:1606321

    Google Scholar 

  24. Zielke D, Gogolin R, Halbich M-U, Marquardt C, Lövenich W, Sauer R, Schmidt J (2018) Large-area PEDOT:PSS/c-Si heterojunction solar cells with screen-printed metal contacts. Sol RRL 2:1700191

    Google Scholar 

  25. Kasahara K, Hossain J, Harada D, Ichikawa K, Ishikawa R, Shirai H (2018) Crystalline-Si heterojunction with organic thin-layer (HOT) solar cell module using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS). Sol Energy Mater Sol Cells 181:60–70

    CAS  Google Scholar 

  26. Miura T, Shirai H (2017) Spectroscopic ellipsometry study of PEDOT:PSS. Thesis of Graduate course, Saitama University, Japan

    Google Scholar 

  27. Price MJ, Foley JM, May RA, Maldonado S (2010) Comparison of majority carrier charge transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions. Appl Phys Lett 97:083503

    Google Scholar 

  28. Zhang Y, Cui W, Zhu Y, Zu F, Liao L, Lee ST, Sun B (2015) High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy Environ Sci 8:297–302

    CAS  Google Scholar 

  29. Jeong S, Garnett EC, Wang S, Yu Z, Fan S, Brongersma ML, McGehee MD, Cui Y (2012) Hybrid silicon nanocone-polymer solar cells. Nano Lett 12:2971–2976

    CAS  PubMed  Google Scholar 

  30. Arici E, Sariciftci NS, Meissner D (2004) Hybrid solar cells. Encycl Nanosci Nanotechnol 3:929–944

    Google Scholar 

  31. Lam C, Shi S, Lu J, Chan PKL (2016) Efficiency improvement in silicon nanowire/conductive polymer hybrid solar cells based on formic acid treatment. RSC Adv 6:86836–86842

    CAS  Google Scholar 

  32. Pettersson LAA, Ghosh S, Inganäs O (2002) Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate). Org Electron 3:143–148

    CAS  Google Scholar 

  33. Saiful Islam ATM, Ishikawa R, Shirai H (2019) Solution-processed crystalline silicon heterojunction solar cells. In: Advanced nanomaterials for solar cells and light emitting diodes. Elsevier Inc., pp 97–117

    Google Scholar 

  34. Nagamatsu KA, Avasthi S, Jhaveri J, Sturm JC (2014) A 12% efficient silicon/PEDOT:PSS heterojunction solar cell fabricated at <100 °C. IEEE J Photovoltaics 4:260–264

    Google Scholar 

  35. Xia Y, Sun K, Ouyang J (2012) Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater 24:2436–2440

    CAS  PubMed  Google Scholar 

  36. Pietsch M, Jäckle S, Christiansen S (2014) Interface investigation of planar hybrid n-Si/PEDOT:PSS solar cells with open circuit voltages up to 645 mV and efficiencies of 12.6 %. Appl Phys a Mater Sci Process 115:1109–1113

    CAS  Google Scholar 

  37. Hossain J, Ohki T, Ichikawa K, Fujiyama K, Ueno K, Fujii Y, Hanajiri T, Shirai H (2016) Investigating the chemical mist deposition technique for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) on textured crystalline-silicon for organic/crystalline-silicon heterojunction solar cells. Jpn J Appl Phys 55:031601

    Google Scholar 

  38. Kim Y, Lee J, Kang H, Kim G, Kim N, Lee K (2012) Controlled electro-spray deposition of highly conductive PEDOT:PSS films. Sol Energy Mater Sol Cells 98:39–45

    CAS  Google Scholar 

  39. Xiong Z, Liu C (2012) Optimization of inkjet printed PEDOT:PSS thin films through annealing processes. Org Electron 13:1532–1540

    CAS  Google Scholar 

  40. Tang Z, Liu Q, Khatri I, Ishikawa R, Ueno K, Shirai H (2012) Optical properties and carrier transport in c-Si/conductive PEDOT:PSS(GO) composite heterojunctions. Phys Status Solidi C 9:2075–2078

    CAS  Google Scholar 

  41. Liu R, Lee S-T, Sun B (2014) 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv Mater 26:6007–6012

    CAS  PubMed  Google Scholar 

  42. Subramani T, Syu H-J, Liu C-T, Hsueh C-C, Yang S-T, Lin C-F (2016) Low-pressure-assisted coating method to improve interface between PEDOT:PSS and silicon nanotips for high-efficiency organic/inorganic hybrid solar cells via solution process. ACS Appl Mater Interfaces 8:2406–2415

    CAS  PubMed  Google Scholar 

  43. Crowell CR, Sze SM (1966) Current transport in metal-semiconductor barriers. Solid State Electron 9:1035–1048

    CAS  Google Scholar 

  44. Jäckle S, Mattiza M, Liebhaber M, Brönstrup G, Rommel M, Lips K, Christiansen S (2015) Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells. Sci Rep 5:13008

    PubMed  PubMed Central  Google Scholar 

  45. He J, Gao P, Ling Z, Ding L, Yang Z, Ye J, Cui Y (2016) High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation. ACS Nano 10:11525–11531

    CAS  PubMed  Google Scholar 

  46. Sze SM, Ng KK (2006) Physics of semiconductor devices, 3rd ed. https://doi.org/10.1002/0470068329

  47. Andrews JM, Lepselter MP (1970) Reverse current-voltage characteristics of metal-silicide Schottky diodes. Solid State Electron 13:1011–1023

    CAS  Google Scholar 

  48. Thurmond CD (1975) The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP. J Electrochem Soc 122:1133–1141

    CAS  Google Scholar 

  49. Madelung O (1996) Semiconductors—basic data, 2nd ed. https://doi.org/10.1007/978-3-642-97675-9

  50. Sah C, Noyce RN, Shockley W (1957) Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc IRE 45:1228–1243

    Google Scholar 

  51. Green MA, Keevers MJ (1995) Optical properties of intrinsic silicon at 300 K. Prog Photovoltaics Res Appl 3:189–192

    CAS  Google Scholar 

  52. Sze SM, Crowell CR, Kahng D (1964) Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers. J Appl Phys 35:2534–2536

    Google Scholar 

  53. Gerling LG, Masmitja G, Voz C, Ortega P, Puigdollers J, Alcubilla R (2016) Back junction n-type silicon heterojunction solar cells with V2O5 hole-selective contact. Energy Procedia 92:633–637

    CAS  Google Scholar 

  54. Park S, Cho E, Song D, Conibeer G, Green MA (2009) n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Sol Energy Mater Sol Cells 93:684–690

    CAS  Google Scholar 

  55. Huang J, Miller PF, Wilson JS, de Mello AJ, de Mello JC, Bradley DDC (2005) Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films. Adv Funct Mater 15:290–296

    CAS  Google Scholar 

  56. Hwang J, Amy F, Kahn A (2006) Spectroscopic study on sputtered PEDOT·PSS: role of surface PSS layer. Org Electron 7:387–396

    CAS  Google Scholar 

  57. Koch N, Vollmer A, Elschner A (2007) Influence of water on the work function of conducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Appl Phys Lett 90:043512

    Google Scholar 

  58. Bubnova O, Khan ZU, Wang H et al (2013) Semi-metallic polymers. Nat Mater 13:190–194

    PubMed  Google Scholar 

  59. Yun DJ, Ra H, Kim J, Hwang I, Lee J, Rhee SW, Chung J (2012) Characterizing annealing effect of poly (3,4-ethylenedioxythiophene) polymerized with poly (4-styrenesulfonate) conjugated film on the molecular arrangement andwork function by core-level and valence-level band spectra. ECS J Solid State Sci Technol 1:M10–M14

    CAS  Google Scholar 

  60. Hossain J, Kasahara K, Harada D et al (2017) Barium hydroxide hole blocking layer for front- and back-organic/crystalline Si heterojunction solar cells. J Appl Phys 122:55101

    Google Scholar 

  61. Ohki T, Ichikawa K, Hossain J, Fujii Y, Hanajiri T, Ishikawa R, Ueno K, Shirai H (2016) Effect of substrate bias on mist deposition of conjugated polymer on textured crystalline-Si for efficient c-Si/organic heterojunction solar cells. Phys Status Solidi a 213:1922–1925

    CAS  Google Scholar 

  62. Jiang X, Wang Z, Han W et al (2017) High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide. Appl Surf Sci 407:398–404

    CAS  Google Scholar 

  63. Li Q, Chen S, Yang J, Zou J, Xie W, Zeng X (2018) High performance silicon/organic hybrid solar cells with dual localized surface plasmonic effects of Ag and Au nanoparticles. Sol RRL 2:1800028

    Google Scholar 

  64. Ge Z, Xu L, Cao Y, Wu T, Song H, Ma Z, Xu J, Chen K (2015) Substantial improvement of short wavelength response in n-SiNW/PEDOT:PSS solar cell. Nanoscale Res Lett 10:330

    PubMed Central  Google Scholar 

  65. Yang C, Sun Z, He Y, Xiong B, Chen S, Li M, Zhou Y, Zheng Y, Sun K (2019) Performance-enhancing approaches for the PEDOT:PSS-Si hybrid solar cells. Angew Chemie Int Ed. https://doi.org/10.1002/anie.201910629

    Article  Google Scholar 

  66. Yoon S-S, Khang D-Y (2018) High efficiency (>17%) Si-organic hybrid solar cells by simultaneous structural, electrical, and interfacial engineering via low-temperature processes. Adv Energy Mater 8:1702655

    Google Scholar 

  67. Shen X, Sun B, Liu D, Lee S-T (2011) Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. J Am Chem Soc 133:19408–19415

    CAS  PubMed  Google Scholar 

  68. He L, Jiang C, Wang H, Lai D, Rusli (2012) High efficiency planar Si/organic heterojunction hybrid solar cells. Appl Phys Lett 100:073503

    Google Scholar 

  69. Schmidt J, Titova V, Zielke D (2013) Organic-silicon heterojunction solar cells: open-circuit voltage potential and stability. Appl Phys Lett 103:183901

    Google Scholar 

  70. Zhang X, Yang D, Yang Z, Guo X, Liu B, Ren X, Liu S (Frank) (2016) Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation. Sci Rep 6:35091

    Google Scholar 

  71. Jäckle S, Liebhaber M, Gersmann C, Mews M, Jäger K, Christiansen S, Lips K (2017) Potential of PEDOT:PSS as a hole selective front contact for silicon heterojunction solar cells. Sci Rep 7:2170

    PubMed  PubMed Central  Google Scholar 

  72. Gogolin R, Zielke D, Descoeudres A, Despeisse M, Ballif C, Schmidt J (2017) Demonstrating the high Voc potential of PEDOT:PSS/c-Si heterojunctions on solar cells. Energy Procedia 124:593–597

    CAS  Google Scholar 

  73. Islam ATMS, Karim ME, Rajib A et al (2019) Chemical mist deposition of organic for efficient front- and back-PEDOT:PSS/crystalline Si heterojunction solar cells. Appl Phys Lett 114:193901

    Google Scholar 

  74. Madogni VI, Kounouhéwa B, Akpo A, Agbomahéna M, Hounkpatin SA, Awanou CN (2015) Comparison of degradation mechanisms in organic photovoltaic devices upon exposure to a temperate and a subequatorial climate. Chem Phys Lett 640:201–214

    CAS  Google Scholar 

  75. Schmidt J, Zielke D, Lövenich W, Hörteis M, Elschner A (2014) Organic-silicon heterojunctions: a promising new concept for high-efficiency solar cells. In: 6th world conference on photovoltaic energy conversion, Kyoto, Japan, pp 869–870

    Google Scholar 

  76. El Radaf IM, Al-Kotb MS, Nasr M, Yahia IS (2019) Fabrication and electrical characterization of the InSbS3/n-Si heterojunction. J Alloys Compd 788:206–211

    Google Scholar 

  77. Hao L, Xu H, Dong S, Du Y, Luo L, Zhang C, Liu H, Wu Y, Liu Y (2019) SnSe/SiO2/Si heterostructures for ultrahigh-sensitivity and broadband optical position sensitive detectors. IEEE Electron Device Lett 40:55–58

    CAS  Google Scholar 

  78. Abd El-Rahman KF, Darwish AAA, El-Shazly EAA (2014) Electrical and photovoltaic properties of SnSe/Si heterojunction. Mater Sci Semicond Process 25:123–129

    CAS  Google Scholar 

  79. Cai L, Wang W, Jin L, et al (2019) 12.29% Low Temperature–Processed Dopant-Free CdS/p-Si Heterojunction Solar Cells. Adv Mater Interfaces 6:1900367

    Google Scholar 

  80. Lin Z, He Q, Yin A, Xu Y, Wang C, Ding M, Cheng H-C, Papandrea B, Huang Y, Duan X (2015) Cosolvent approach for solution-processable electronic thin films. ACS Nano 9:4398–4405

    CAS  PubMed  Google Scholar 

  81. Webber DH, Brutchey RL (2013) Alkahest for V2VI3 chalcogenides: dissolution of nine bulk semiconductors in a diamine-dithiol solvent mixture. J Am Chem Soc 135:15722–15725

    CAS  PubMed  Google Scholar 

  82. Rahman MF, Hossain J, Kuddus A, Tabassum S, Rubel MHK, Shirai H, ABMI (2020) A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells. Appl Phys A Mater Sci Process 126:145

    Google Scholar 

  83. Burgelman M, Verschraegen J, Degrave S, Nollet P (2004) Modeling thin-film PV devices. Prog Photovoltaics Res Appl 12:143–153

    CAS  Google Scholar 

  84. Kuddus A, Rahman MF, Ahmmed S, Hossain J, Ismail ABM (2019) Role of facile synthesized V2O5 as hole transport layer for CdS/CdTe heterojunction solar cell: validation of simulation using experimental data. Superlattices Microstruct 132:106168

    Google Scholar 

  85. Moon MMA, Ali MH, Rahman MF, Hossain J, Ismail ABMI (2020) Design and simulation of FeSi2 based novel heterojunction solar cells for harnessing visible and near-infrared light. Phys Status Solidi A 217:1900921

    CAS  Google Scholar 

  86. Mondal BK, Mostaque SK, Rashid MA, Kuddus A, Shirai H, Hossain J (2021) Effect of CdS and In3Se4 BSF layers on the photovoltaic performance of PEDOT:PSS/n-Si solar cells: simulation based on experimental data. Superlattices Microstruct 152:106853

    Google Scholar 

  87. Mondal BK, Newaz MA, Rashid MA, Hossain KM, Mostaque SK, Rahman MF, Rubel MHK, Hossain J (2019) Electronic structure of In3–xSe4 electron transport layer for chalcogenide/p-Si heterojunction solar cells. ACS Omega 4:17762–17772

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Prakoso AB, Rusli LZ, Lu C, Jiang C (2018) Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure. Semicond Sci Technol 33:35016

    Google Scholar 

  89. Hossain J, Julkarnain M, Mondal BK, Newaz MA, Khan KA (2019) Unveiling the electrical and thermoelectric properties of highly degenerate indium selenide thin films: indication of In3Se4 phase. Mater Res Express 6:126421

    Google Scholar 

  90. Hossain J, Mondal BK, Mostaque SK, Ahmed SR Al, Shirai H (2019) Optimization of multilayer anti-reflection coatings for efficient light management of PEDOT:PSS/c-Si heterojunction solar cells. Mater Res Express 7:015502

    Google Scholar 

  91. Sharma R, Gupta A, Virdi A (2017) Effect of single and double layer antireflection coating to enhance photovoltaic efficiency of silicon solar. J Nano- Electron Phys 9:02001

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank their colleagues Q. Liu, K. Ishikawa, T. Ohki, S. Funada, K. Ichikawa, T. Kuroki, T. Miura, B. K. Mondal, and D. Harada for their efforts during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaker Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, J., Saiful Islam, A.T.M., Kasahara, K., Ishikawa, R., Ueno, K., Shirai, H. (2021). State-of-the-Art of Solution-Processed Crystalline Silicon/Organic Heterojunction Solar Cells: Challenges and Future. In: Roy, J.K., Kar, S., Leszczynski, J. (eds) Development of Solar Cells. Challenges and Advances in Computational Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-69445-6_2

Download citation

Publish with us

Policies and ethics