Skip to main content

RapidAuth: Fast Authentication for Sustainable IoT

  • Conference paper
  • First Online:
Forthcoming Networks and Sustainability in the IoT Era (FoNeS-IoT 2020)

Abstract

The exponential growth in the number of Internet of Things (IoT) devices, the sensitive nature of data they produce, and the simple nature of these devices makes IoT systems vulnerable to a wide range cyber-threats. Physical attacks are one of the major concerns for IoT device security. Security solutions for the IoT have to be accurate and quick since many real time applications depend on the data generated by these devices. In this article, we undertake the IoT authentication problem by proposing a fast protocol RapidAuth, which also restricts physical attacks. The proposed protocol uses Physical Unclonable Functions to achieve the security goals and requires the exchange of only two messages between the server and an IoT device. The analysis of RapidAuth proves its’ robustness against various types of attacks as well as its’ efficiency in terms of computation, communication, memory overheads and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aman, M.N., Chua, K.C., Sikdar, B.: Physically secure mutual authentication for IoT. In: Proceedings of IEEE Conference on Dependable and Secure Computing, Taipei, pp. 310–317 (2017). https://doi.org/10.1109/DESEC.2017.8073853

  2. Aman, M.N., et al.: HAtt: hybrid remote attestation for the internet of things with high availability. IEEE Internet Things J. 7(8), 7220–7233 (2020). https://doi.org/10.1109/JIOT.2020.2983655

    Article  Google Scholar 

  3. Kamal, M., Tariq, M.: Light-weight security and blockchain based provenance for advanced metering infrastructure. IEEE Access 7, 87345–87356 (2019). https://doi.org/10.1109/ACCESS.2019.2925787

    Article  Google Scholar 

  4. Chaudhry, S.A., Yahya, K., Al-Turjman, F., Yang, M.: A secure and reliable device access control scheme for IoT based sensor cloud systems. IEEE Access 8, 139244–139254 (2020). https://doi.org/10.1109/ACCESS.2020.3012121

    Article  Google Scholar 

  5. Chaudhry, S.A., Shon, T., Al-Turjman, F., Alsharif, M.H.: Correcting design flaws: an improved and cloud assisted key agreement scheme in cyber physical systems. Comput. Commun. 153, 527–537 (2020). https://doi.org/10.1016/j.comcom.2020.02.025

    Article  Google Scholar 

  6. Aman, M.N., Sikdar, B.: ATT-auth: a hybrid protocol for industrial IoT attestation with authentication. IEEE Internet Things J. 5(6), 5119–5131 (2018). https://doi.org/10.1109/JIOT.2018.2866623

    Article  Google Scholar 

  7. Kerry, C.F.: Digital signature standard (DSS). National Institute of Standards and Technology (2013)

    Google Scholar 

  8. Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks. In: Proceedings of IPSN, SPOTS Track, pp. 245–256, April 2008)

    Google Scholar 

  9. Shivraj, V., et al.: One time password authentication scheme based on elliptic curves for Internet of Things (IoT). In: Proceedings of NSITNSW, Riyadh, KSA, pp. 1–6, February 2015

    Google Scholar 

  10. Porambage, P., et al.: Two-phase authentication protocol for wireless sensor networks in distributed IoT applications. In: Proceedings of IEEE WCNC, Istanbul, Turkey, pp. 2728–2733, April 2014

    Google Scholar 

  11. Kim, Y., et al.: DAoT: dynamic and energy-aware authentication for smart home appliances in internet of things. In: Proceedings of IEEE ICCE, Las Vegas, NV, pp. 196–197, January 2015

    Google Scholar 

  12. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Proceedings of IEEE/ACM DAC, San Diego, CA, pp. 9–14, June 2007

    Google Scholar 

  13. Cotese, P., et al.: Bernardo, efficient and practical authentication of PUF-based rfid tags in supply chains. In: Proceedings of IEEE RFIDTA, Guangzhou, China, pp. 182–188, June 2010

    Google Scholar 

  14. Lee, Y.S., et al.: Mutual authentication in wireless body sensor networks (WBSN) based on physical unclonable function (PUF). In: Proceedings of IEEE IWCMC, Sardinia, Italy, pp. 1314–1318, July 2013

    Google Scholar 

  15. Frikken, K.B., Blanton, M., Atallah, M.J.: Robust authentication using physically unclonable functions. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 262–277. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04474-8_22

    Chapter  Google Scholar 

  16. Aman, M.N., Sikdar, B., Chua, K.C., Ali, A.: Low power data integrity in IoT systems. IEEE Internet Things J. 5(4), 3102–3113 (2018). https://doi.org/10.1109/JIOT.2018.2833206

    Article  Google Scholar 

  17. Kamal, M., Tariq, S.: Light-weight security and data provenance for multi-hop internet of things. IEEE Access 6, 34439–34448 (2018). https://doi.org/10.1109/ACCESS.2018.2850821

    Article  Google Scholar 

  18. Aman, M.N., Basheer, M.H., Sikdar, B.: Two-factor authentication for IoT with location information. IEEE Internet Things J. 6(2), 3335–3351 (2019). https://doi.org/10.1109/JIOT.2018.2882610

    Article  Google Scholar 

  19. Bohm, C., Hofer, M.: Physical Unclonable Functions in Theory and Practice. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-5040-5

    Book  Google Scholar 

  20. Aman, M.N., Basheer, M.H., Sikdar, B.: Data provenance for IoT with light weight authentication and privacy preservation. IEEE Internet Things J. 6(6), 10441–10457 (2019). https://doi.org/10.1109/JIOT.2019.2939286

    Article  Google Scholar 

  21. Guilley, S., Pacalet, R.: SoCs security: a war against side-channels. Ann. Telecommun. 59(7), 998–1009 (2004)

    Google Scholar 

  22. Aman, M.N., Basheer, M.H., Sikdar, B.: A lightweight protocol for secure data provenance in the internet of things using wireless fingerprints. IEEE Syst. J. https://doi.org/10.1109/JSYST.2020.3000269

  23. Hankerson, D., et al.: Guide to Elliptic Curve Cryptography, 1st edn. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  24. Sidhu, D.P.: Authentication protocols for computer networks: I. Comput. Netw. ISDN Syst. 11, 287–310 (1986)

    Article  Google Scholar 

  25. Varadharajan, V.: Verification of network security protocols. Comput. Secur. 8(8), 693–708 (1989)

    Article  Google Scholar 

  26. Mao, W., Boyd, C.: Towards formal analysis of security protocols. In: Proceedings of Computer Security Foundations Workshop VI, pp. 147–158 (1993)

    Google Scholar 

  27. Aman, M.N., Chua, K.C., Sikdar, B.: Mutual authentication in IoT systems using physical unclonable functions. IEEE Internet Things J. 4(5), 1327–1340 (2017). https://doi.org/10.1109/JIOT.2017.2703088

    Article  Google Scholar 

  28. Krovetz, T.: UMAC: message authentication code using universal hashing. IETF RFC 4418, March 2006

    Google Scholar 

  29. Babka, M.: Properties of universal hashing. Charles University in Prague, Master thesis (2010)

    Google Scholar 

  30. Mansour, Y., et al.: The computational complexity of universal hashing. Theoret. Comput. Sci. 107(1), 121–133 (1993)

    Article  MathSciNet  Google Scholar 

  31. Kivinen, T., Kojo, M.: More modular exponential (MODP) Diffie-Hellman groups for internet key exchange (IKE). IETF RFC 3526, May 2003

    Google Scholar 

  32. Karatsuba, A.: The complexity of computations. In: Proceedings of the Steklov Institute of Mathematics, vol. 211, pp. 169–183 (1995)

    Google Scholar 

  33. Kim, P.: IoT specific IPv6 stateless address autoconfiguration with modified EUI-64. IETF Internet-Draft, July 2015

    Google Scholar 

  34. Whiting, D., et al.: Counter with CBC-MAC (CCM). IETF RFC 3610, September 2003

    Google Scholar 

  35. Katagi, M., Moriai, S.: The 128-bit blockcipher CLEFIA. IETF RFC 6114, March 2011

    Google Scholar 

  36. Montenegro, G., et al.: Transmission of IPv6 packets over IEEE 802.15.4 networks. IETF RFC 4944, September 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehzad Ashraf Chaudhry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aman, M.N., Chaudhry, S.A., Al-Turjman, F. (2021). RapidAuth: Fast Authentication for Sustainable IoT. In: Ever, E., Al-Turjman, F. (eds) Forthcoming Networks and Sustainability in the IoT Era. FoNeS-IoT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-030-69431-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69431-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69430-2

  • Online ISBN: 978-3-030-69431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics