Skip to main content

The Role of Molecular Genetics of Glioblastoma in the Clinical Setting

  • Chapter
  • First Online:
Precision Molecular Pathology of Glioblastoma

Abstract

The rapid evolving knowledge of glioblastoma molecular biomarkers and their association to prognosis and treatment calls for clinicians to keep abreast of the latest literature on the recommendations that have an impact on clinical practice. The presence or absence of IDH mutations and MGMT methylation continue to be essential molecular markers that indicate prognosis and response to treatment. New emerging data on the presence of other alterations such as TERT promoter mutation, EGFR amplification, and/or the combination of gain of entire chromosome 7 and loss of entire chromosome 10 (+7/−10) in the case of IDH-wildtype astrocytomas and the presence of CDKN2A/B in IDH-mutant astrocytomas have become significant as these mutations are associated with more aggressive tumor behavior. Other mutations such as EGFRvIII expression, FGFR-TACC gene fusions, PTEN deletion, PDGFRA and BRAF V 600E have elucidated important pathways for targeted therapies and aid in prognosis assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van den Bent MJ, et al. A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics. Neuro-Oncology. 2017;19(5):614–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Louis DN, et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020;30(4):844–56.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis DN, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  4. Louis DN, et al. Announcing cIMPACT-NOW: the consortium to inform molecular and practical approaches to CNS tumor taxonomy. Acta Neuropathol. 2017;133(1):1–3.

    Article  PubMed  Google Scholar 

  5. Louis DN, et al. cIMPACT-NOW (the consortium to inform molecular and practical approaches to CNS tumor taxonomy): a new initiative in advancing nervous system tumor classification. Brain Pathol. 2017;27(6):851–2.

    Article  PubMed  Google Scholar 

  6. Zhang C, et al. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro-Oncology. 2013;15(9):1114–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romanidou O, Kotoula V, Fountzilas G. Bridging cancer biology with the clinic: comprehending and exploiting IDH gene mutations in gliomas. Cancer Genomics Proteomics. 2018;15(5):421–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyata S, et al. Comprehensive metabolomic analysis of IDH1R132H clinical glioma samples reveals suppression of β-oxidation due to carnitine deficiency. Sci Rep. 2019;9(1):9787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Clark O, Yen K, Mellinghoff IK. Molecular pathways: isocitrate dehydrogenase mutations in cancer. Clin Cancer Res. 2016;22(8):1837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartmann C, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118(4):469–74.

    Article  PubMed  Google Scholar 

  12. Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27(4):599–608.

    Article  CAS  PubMed  Google Scholar 

  13. Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res. 2013;19(4):764.

    Article  CAS  PubMed  Google Scholar 

  14. Waitkus MS, Diplas BH, Yan H. Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncology. 2016;18(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  15. Jalbert LE, et al. Metabolic profiling of IDH mutation and malignant progression in infiltrating glioma. Sci Rep. 2017;7:44792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ostrom QT, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro-Oncology. 2019;21(Suppl_5):v1–v100.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Molinaro AM, et al. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol. 2019;15(7):405–17.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Christians A, et al. The prognostic role of IDH mutations in homogeneously treated patients with anaplastic astrocytomas and glioblastomas. Acta Neuropathol Commun. 2019;7(1):156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tejera D, et al. Ivosidenib, an IDH1 inhibitor, in a patient with recurrent, IDH1-mutant glioblastoma: a case report from a phase I study. CNS Oncol. 2020;9:Cns62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mellinghoff, I. K., et al. Ivosidenib in Isocitrate Dehydrogenase 1-Mutated Advanced Glioma. J Clin Oncol 2020;38(29):3398–406.

    Google Scholar 

  22. De La Fuente MI, et al. A phase Ib/II study of olutasidenib in patients with relapsed/refractory IDH1 mutant gliomas: safety and efficacy as single agent and in combination with azacitidine. J Clin Oncol. 2020;38(15_Suppl):2505.

    Article  Google Scholar 

  23. Galanis E, et al. Integrating genomics into neuro-oncology clinical trials and practice. Am Soc Clin Oncol Educ Book. 2018;38:148–57.

    Article  PubMed  Google Scholar 

  24. Popovici-Muller J, et al. Discovery of AG-120 (Ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med Chem Lett. 2018;9(4):300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brat DJ, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018;136(5):805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tesileanu CMS, et al. Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro-Oncology. 2019;22(4):515–23.

    Article  PubMed Central  CAS  Google Scholar 

  27. Stupp R, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  28. Binabaj MM, et al. The prognostic value of MGMT promoter methylation in glioblastoma: a meta-analysis of clinical trials. J Cell Physiol. 2018;233(1):378–86.

    Article  CAS  PubMed  Google Scholar 

  29. Yu W, et al. O(6)-methylguanine-DNA methyltransferase (MGMT): challenges and new opportunities in glioma chemotherapy. Front Oncol. 2020;9:1547.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mansouri A, et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro-Oncology. 2019;21(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  31. Dahlrot RH, et al. Posttreatment effect of MGMT methylation level on glioblastoma survival. J Neuropathol Exp Neurol. 2019;78(7):633–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brigliadori G, et al. Defining the cutoff value of MGMT gene promoter methylation and its predictive capacity in glioblastoma. J Neuro-Oncol. 2016;128(2):333–9.

    Article  CAS  Google Scholar 

  33. Hegi ME, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  34. Estival A, et al. Pyrosequencing versus methylation-specific PCR for assessment of MGMT methylation in tumor and blood samples of glioblastoma patients. Sci Rep. 2019;9(1):11125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hsu C-Y, et al. Prognosis of glioblastoma with faint MGMT methylation-specific PCR product. J Neuro-Oncol. 2015;122(1):179–88.

    Article  CAS  Google Scholar 

  36. Pinson H, et al. Weak MGMT gene promoter methylation confers a clinically significant survival benefit in patients with newly diagnosed glioblastoma: a retrospective cohort study. J Neuro-Oncol. 2020;146(1):55–62.

    Article  CAS  Google Scholar 

  37. Malmström A, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012;13(9):916–26.

    Article  PubMed  CAS  Google Scholar 

  38. Kalra B, Kannan S, Gupta T. Optimal adjuvant therapy in elderly glioblastoma: results from a systematic review and network meta-analysis. J Neuro-Oncol. 2020;146(2):311–20.

    Article  CAS  Google Scholar 

  39. Wee CW, et al. Chemoradiation in elderly patients with glioblastoma from the multi-institutional GBM-molRPA cohort: is short-course radiotherapy enough or is it a matter of selection? J Neuro-Oncol. 2020;148(1):57–65.

    Article  Google Scholar 

  40. Hanna C, et al. Treatment of newly diagnosed glioblastoma in the elderly: a network meta-analysis. Cochrane Database Syst Rev. 2020;3(3):Cd013261.

    PubMed  Google Scholar 

  41. Perry JR, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027–37.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou M, et al. The value of MGMT promote methylation and IDH-1 mutation on diagnosis of pseudoprogression in patients with high-grade glioma: a meta-analysis. Medicine. 2019;98(50):e18194.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brandes AA, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.

    Article  PubMed  Google Scholar 

  44. Wen PY, et al. Response assessment in neuro-oncology clinical trials. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(21):2439–49.

    Article  CAS  Google Scholar 

  45. Thust SC, van den Bent MJ, Smits M. Pseudoprogression of brain tumors. J Magn Reson Imaging. 2018;48(3):571–89.

    Article  PubMed Central  Google Scholar 

  46. Chukwueke UN, Wen PY. Use of the response assessment in neuro-oncology (RANO) criteria in clinical trials and clinical practice. CNS Oncol. 2019;8(1):CNS28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maire CL, Ligon KL. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro-Oncology. 2014;16 Suppl 8(Suppl 8):viii1–6.

    Article  PubMed  CAS  Google Scholar 

  48. Cimino PJ, et al. A wide spectrum of EGFR mutations in glioblastoma is detected by a single clinical oncology targeted next-generation sequencing panel. Exp Mol Pathol. 2015;98(3):568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brennan CW, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. An Z, et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37(12):1561–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mellinghoff IK, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.

    Article  CAS  PubMed  Google Scholar 

  52. Aldape K, et al. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):829–48.

    Article  CAS  PubMed  Google Scholar 

  53. Neftel C, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835–849.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kessler T, et al. Molecular profiling-based decision for targeted therapies in IDH wild-type glioblastoma. Neurooncol Adv. 2020;2(1):vdz060.

    PubMed  PubMed Central  Google Scholar 

  55. Brito C, et al. Clinical insights gained by refining the 2016 WHO classification of diffuse gliomas with: EGFR amplification, TERT mutations, PTEN deletion and MGMT methylation. BMC Cancer. 2019;19(1):968.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alexandru O, et al. Receptor tyrosine kinase targeting in glioblastoma: performance, limitations and future approaches. Contemp Oncol (Pozn). 2020;24(1):55–66.

    CAS  Google Scholar 

  57. Weller M, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.

    Article  CAS  PubMed  Google Scholar 

  58. Milella M, et al. PTEN: multiple functions in human malignant tumors. Front Oncol. 2015;5:24.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Han F, et al. PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis. Onco Targets Ther. 2016;9:3485–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang J-M, et al. Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization. Oncogene. 2017;36(26):3673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosenthal M, et al. Buparlisib plus carboplatin or lomustine in patients with recurrent glioblastoma: a phase Ib/II, open-label, multicentre, randomised study. ESMO Open. 2020;5(4):e000672.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wen PY, et al. Phase I, open-label, multicentre study of buparlisib in combination with temozolomide or with concomitant radiation therapy and temozolomide in patients with newly diagnosed glioblastoma. ESMO Open. 2020;5(4):e000673.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maraka S, Janku F. BRAF alterations in primary brain tumors. Discov Med. 2018;26(141):51–60.

    PubMed  Google Scholar 

  64. Bond CE, Whitehall VLJ. How the BRAF V600E mutation defines a distinct subgroup of colorectal cancer: molecular and clinical implications. Gastroenterol Res Pract. 2018;2018:9250757.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kushnirsky M, et al. Prolonged complete response with combined dabrafenib and trametinib after BRAF inhibitor failure in BRAF-mutant glioblastoma. JCO Precis Oncol. 2020;4:44–50.

    Article  Google Scholar 

  66. Ida CM, et al. Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol. 2015;25(5):575–86.

    Article  CAS  PubMed  Google Scholar 

  67. Dias-Santagata D, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One. 2011;6(3):e17948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koelsche C, et al. Mutant BRAF V600E protein in ganglioglioma is predominantly expressed by neuronal tumor cells. Acta Neuropathol. 2013;125(6):891–900.

    Article  CAS  PubMed  Google Scholar 

  69. Phadnis S, et al. Rare-20. BRAF mutations in pediatric gangliogliomas and the clinical significance an MD Anderson Cancer Center experience. Neuro-Oncology. 2018;20(Suppl_6):vi240.

    Article  PubMed Central  Google Scholar 

  70. Korshunov A, et al. Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathol. 2018;28(5):656–62.

    Article  CAS  PubMed  Google Scholar 

  71. Behling F, et al. Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagn Pathol. 2016;11(1):55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zeng Y, et al. Clinicopathological, immunohistochemical and molecular genetic study on epithelioid glioblastoma: a series of fifteen cases with literature review. Onco Targets Ther. 2020;13:3943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kanemaru Y, et al. Dramatic response of BRAF V600E-mutant epithelioid glioblastoma to combination therapy with BRAF and MEK inhibitor: establishment and xenograft of a cell line to predict clinical efficacy. Acta Neuropathol Commun. 2019;7(1):119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Burger MC, et al. Dabrafenib in patients with recurrent, BRAF V600E mutated malignant glioma and leptomeningeal disease. Oncol Rep. 2017;38(6):3291–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lassman A, et al. OS10.6 Infigratinib (BGJ398) in patients with recurrent gliomas with fibroblast growth factor receptor (FGFR) alterations: a multicenter phase II study. Neuro-Oncology. 2019;21:iii21–2.

    Article  PubMed Central  Google Scholar 

  76. Meric-Bernstam F, et al. Abstract CT238: TAS-120 in patients with advanced solid tumors bearing FGF/FGFR aberrations: a phase I study. Cancer Res. 2019;79(13 Supplement):CT238.

    Article  Google Scholar 

  77. Zhang R-Q, et al. Biomarker-based prognostic stratification of young adult glioblastoma. Oncotarget. 2016;7(4):5030–41.

    Article  PubMed  Google Scholar 

  78. Lassman AB, et al. Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro-Oncology. 2015;17(7):992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Galanis E, et al. A phase 1 and randomized, placebo-controlled phase 2 trial of bevacizumab plus dasatinib in patients with recurrent glioblastoma: Alliance/North Central Cancer Treatment Group N0872. Cancer. 2019;125(21):3790–800.

    Article  CAS  PubMed  Google Scholar 

  80. Jiao Y, Feng Y, Wang X. Regulation of tumor suppressor gene CDKN2A and encoded p16-INK4a protein by covalent modifications. Biochem Mosc. 2018;83(11):1289–98.

    Article  CAS  Google Scholar 

  81. Lu VM, et al. The prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: a systematic review of the contemporary literature. J Neuro-Oncol. 2020;148(2):221–9.

    Article  CAS  Google Scholar 

  82. Brat DJ, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yang RR, et al. IDH mutant lower grade (WHO Grades II/III) astrocytomas can be stratified for risk by CDKN2A, CDK4 and PDGFRA copy number alterations. Brain Pathol. 2020;30(3):541–53.

    Article  CAS  PubMed  Google Scholar 

  84. Appay R, et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro-Oncology. 2019;21:1519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mirchia K, et al. Total copy number variation as a prognostic factor in adult astrocytoma subtypes. Acta Neuropathol Commun. 2019;7(1):92.

    Article  PubMed  CAS  Google Scholar 

  86. Reis GF, et al. CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II–III) astrocytomas. J Neuropathol Exp Neurol. 2015;74(5):442–52.

    Article  CAS  PubMed  Google Scholar 

  87. Patel B, et al. TERT, a promoter of CNS malignancies. Neurooncol Adv. 2020;2(1):vdaa025.

    PubMed  PubMed Central  Google Scholar 

  88. Yuan X, Larsson C, Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene. 2019;38(34):6172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Killela PJ, et al. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget. 2014;5(6):1515–25.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bollam SR, Berens ME, Dhruv HD. When the ends are really the beginnings: targeting telomerase for treatment of GBM. Curr Neurol Neurosci Rep. 2018;18(4):15.

    Article  PubMed  CAS  Google Scholar 

  91. Lee Y, et al. The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathol Commun. 2017;5(1):62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Reifenberger G, et al. Advances in the molecular genetics of gliomas — implications for classification and therapy. Nat Rev Clin Oncol. 2017;14(7):434–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Macarena Ines de La Fuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Pilar Guillermo Prieto, M., de La Fuente, M.I. (2021). The Role of Molecular Genetics of Glioblastoma in the Clinical Setting. In: Otero, J.J., Becker, A.P. (eds) Precision Molecular Pathology of Glioblastoma. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-030-69170-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69170-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69169-1

  • Online ISBN: 978-3-030-69170-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics