Skip to main content

Recent Diagnostic Techniques for COVID-19

  • Chapter
  • First Online:
Computational Intelligence Techniques for Combating COVID-19

Abstract

An outbreak of coronavirus pneumonia was firstly documented in Wuhan, Hubei Province, China (December 2019), with an indication of human-to-human transmission. The causative agent identified for coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). America, Italy, India, and Africa became new venues of COVID infection; the overall data of patients and death is increasing day by day. Generally inplace of most of the infected people develop respiratory symptoms (throat pain, cough, etc.), fever, and chest opacity on CT scan and X-ray. A few numbers of suspected persons are found asymptomatic; they may serve as carriers for infection. As a point of care, the patient diagnosis is compulsory, and only the diagnosis can provide a real-time condition of patients and can be helpful in arresting the spreading of the infection. In the present chapter, we focused on illustrating various diagnostic techniques that have been employed by the world for the detection of the coronavirus. The diagnostic techniques are categorized into molecular and serologic assay techniques. The nucleic acid is detected in molecular assay, whereas the serologic assay uses antigen-antibody reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padhi, A., Kumar, S., Gupta, E., & Saxena, S. K. (2020). Laboratory diagnosis of novel coronavirus disease 2019 (COVID-19). Medical virology: from pathogenesis to disease control. Singapore: Springer. https://doi.org/10.1007/978-981-15-4814-7_0.

    Google Scholar 

  2. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200720-covid-19-sitrep-182.pdf?sfvrsn=60aabc5c.

  3. Cascella, M., Rajnik, M., Cuomo, A., et al. (2020). Features, evaluation, and treatment of coronavirus (COVID-19) [Updated 2020 Aug 10]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554776/.

  4. Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., et al. (2020). The origin, transmission and clinical therapies on corona-virus disease 2019 (COVID-19) outbreak – An update on the status. Military Medical Research, 7(11), 2–10. https://doi.org/10.1186/s40779-020-00240-0.

  5. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., et al. (2020). A new corona-virus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3.

    Google Scholar 

  6. Jia, H. P., Look, D. C., Shi, L., Hickey, M., Pewe, L., Netland, J., et al. (2005). ACE2 receptor expression and severe acute respiratory syndrome corona-virus infection depend on differentiation of human airway epithelia. Journal of Virology, 79(23), 14614–14621. https://doi.org/10.1128/JVI.79.23.14614-14621.2005.

    Google Scholar 

  7. Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by novel corona-virus from Wuhan: An analysis based on decade-long structural studies of SARS. Journal of Virology, 94(7), 1–7. https://doi.org/10.1128/JVI.00127-20.

    Google Scholar 

  8. Carter, L. J., Garner, L., Smoot, J. W., Li, Y., Zhou, Q., Catherine, J., et al. (2020). Assay techniques and test development for COVID-19 diagnosis. ACS Central Science, 6(5), 591–605. https://doi.org/10.1021/acscentsci.0c00501.

    Google Scholar 

  9. Gibbs, R. A. (1990). DNA amplification by the polymerase chain reaction. Analytical Chemistry, 62, 1202–1214. https://doi.org/10.1021/ac00212a004.

    Google Scholar 

  10. http://www.pcrstation.com/discovery.

  11. Joshi, M., & Deshpande, J. D. (2010). Polymerase chain reaction: Methods, principles and application. International Journal of Biomedical Research, 1–5, 81–97.

    Google Scholar 

  12. Atawodi, S. E., Atawodi, J. C., & Dzikwi, A. A. (2010). Polymerase chain reaction: Theory, practice and application: A review. Sahel Medical Journal, 2, 54–63.

    Google Scholar 

  13. Tahamtan, A., & Ardebili, A. (2020). Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Review of Molecular Diagnostics, 20(5), 453–454. https://doi.org/10.1080/14737159.2020.1757437.

    Google Scholar 

  14. https://geneticeducation.co.in/reverse-transcription-pcr-principle-procedure-applications-advantages-and-disadvantages/#Advantages_of_reverse_transcription_PCR.

  15. https://www.dialog.roche.com/pk/en_us/products_and_solutions/molecular-lab/cobas-6800-8800-systems.html.

  16. Cobb, B., Simon, C. O., Stramer, S. L., Body, B., Mitchell, P. S., Reisch, N., et al. (2017). The cobas® 6800/8800 system: A new era of automation in molecular diagnostics. Expert Review of Molecular Diagnostics, 17(2), 167–180. https://doi.org/10.1080/14737159.2017.1275962.

    Google Scholar 

  17. Aretzweiler, G., Leuchter, S., Simon, C. O., Marins, E., & Frontzek, A. (2019). Generating timely molecular diagnostic test results: workflow comparison of the cobas® 6800/8800 to Panther. Expert Review of Molecular Diagnostics, 19(10), 951–957. https://doi.org/10.1080/14737159.2019.1665999.

    Google Scholar 

  18. https://www.who.int/diagnostics_laboratory/eul_0504-04600_cobas_sars_cov2_qualitative_assay_ifu.pdf?ua=1.

  19. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al. (2020). Clinical features of patients infected with 2019 novel corona-virus in Wuhan, China. Lancet, 395(1023), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.

    Google Scholar 

  20. To, K. K., Tsang, O. T., Chik-Yan, Y., Chan, K. H., Wu, T. C., Chan, J. M. C., et al. (2020). Consistent detection of 2019 novel corona-virus in saliva. Clinical Infectious Diseases, 29(4), 1049–1050. https://doi.org/10.1093/cid/ciaa149.

    Google Scholar 

  21. Zhang, Y., Odiwuor, N., Xiong, J., Sun, L., Nyaruaba, R. O., Wei, H., et al. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. Med Rxiv preprint. https://doi.org/10.1101/2020.02.26.20028373.

  22. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), E63. https://doi.org/10.1093/nar/28.12.e63.

    Google Scholar 

  23. Nzelu, C. O., Gomez, E. A., Caceres, A. G., Sakurai, T., Martini-Robles, L., Uezato, H., et al. (2014). Development of a loop mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection. Acta Tropica, 132, 1–6. https://doi.org/10.1016/j.actatropica.2013.12.016.

    Google Scholar 

  24. Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3, 877–882. https://doi.org/10.1038/nprot.2008.57.

    Google Scholar 

  25. Goncalves, D. D. S., Hooker, D. J., Dong, Y., Baran, N., Kyrylos, P., Iturbe-Ormaetxe, I., et al. (2019). Detecting wMel Wolbachia in field-collected Aedes aegypti mosquitoes using loop-mediated isothermal amplification (LAMP). Parasites & Vectors, 12, 404. https://doi.org/10.1186/s13071-019-3666-6.

    Google Scholar 

  26. Calvert, A. E., Biggerstaff, B. J., Tanner, N. A., Lauterbach, M., & Lanciotti, R. S. (2017). Rapid colorimetric detection of zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP). PLoS One, 12, e0185340.

    Google Scholar 

  27. Ismail, A., Modh Nor, N., Abdullah, J. M., Acosta, A., & Sarmiento, M. E. (2017). Sustainable diagnostics for low resources areas. Gelugor: Penerbit University Sains Malaysia.

    Google Scholar 

  28. Kashira, J., & Ahmed Yaqinuddin, A. (2020). Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Medical Hypotheses, 141, 109786. https://doi.org/10.1016/j.mehy.2020.109786.

    Google Scholar 

  29. Kaneko, H., Kawana, T., Fukushima, E., & Suzutani, T. (2007). Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. Journal of Biochemical and Biophysical Methods, 70(3), 499–501. https://doi.org/10.1016/j.jbbm.2006.08.008.

    Google Scholar 

  30. Langabeer, S. E., Gale, R. E., Harvey, R. C., Cook, R. W., Mackinnon, S., & Linch, D. C. (2000). Transcription-mediated amplification and hybridisation protection assay to determine BCR-ABL transcript levels in patients with chronic myeloid leukaemia. Leukemia, 16, 393–399.

    Google Scholar 

  31. Zannoli, S., Morotti, M., Denicolo, A., Tassinari, M., Chiesa, C., Pierro, A., & Sambri, V. (2018). Chapter 9 – Diagnostics and laboratory techniques: Chikungunya and zika viruses global emerging health threats 2018. The American Journal of Tropical Medicine and Hygiene, 99(4), 1105–1106. https://doi.org/10.4269/ajtmh.18-0613.

  32. Stower, H. (2018). CRISPR-based diagnostics. Nature Medicine, 24, 702.

    Google Scholar 

  33. https://www.synthego.com/blog/crispr-Corona-virus-detection.

  34. Wang, H., Li, X., Li, T., Zhang, S., Wang, L., Wu, X., et al. (2020). The genetic sequence, origin, and diagnosis of SARS-CoV-2. European Journal of Clinical Microbiology & Infectious Diseases, 24, 1–7. https://doi.org/10.1007/s10096-020-03899-4.

    Google Scholar 

  35. https://www.taconic.com/taconic-insights/model-generation-solutions/crispr-genome-engineering-advantages-limitations.html.

  36. Hamidi, S. V., & Perreault, J. (2019). Simple rolling circle amplification colorimetric assay based on pH for target DNA detection. Talanta, 201, 419–425. https://doi.org/10.1016/j.talanta.2019.04.003.

    Google Scholar 

  37. Wang, B., Potter, S. J., Lin, Y., Cunningham, A. L., Dwyer, D., Su, Y., et al. (2005). Rapid and sensitive detection of severe acute respiratory syndrome corona-virus by rolling circle amplification. Journal of Clinical Microbiology, 43(5), 2339–2344. https://doi.org/10.1128/JCM.43.5.2339-2344.2005.

    Google Scholar 

  38. Gu, L., Yan, W., Liu, L., Wang, S., Zhang, X., & Lyu, M. (2018). Research progress on rolling circle amplification (RCA)-based biomedical sensing. Pharmaceuticals (Basel), 11(2), 1–19. https://doi.org/10.3390/ph11020035.

    Google Scholar 

  39. Melissa, B., & Miller, Y. W. T. (2009). Basic concepts of microarrays and potential applications in clinical microbiology. Clinical Microbiology Reviews, 22(4), 611–633. https://doi.org/10.1128/CMR.00019-09.

    Google Scholar 

  40. http://grf.lshtm.ac.uk/microarrayoverview.htm.

  41. Gire, S. K., Goba, A., Anderson, K. G., Sealfon, R. S. G., Park, D. J., Kanneh, L., et al. (2014). Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 345, 1369–1372. https://doi.org/10.1126/science.1259657.

    Google Scholar 

  42. Hoenen, T., Groseth, A., Rosenke, K., Fischer, R. J., Hoenen, A., Seth, D., et al. (2016). Nanopore sequencing as a rapidly deployable Ebola outbreak tool. Emerging Infectious Diseases, 22, 331–334.

    Google Scholar 

  43. Manning, J. E., Bohl, J. A., Lay, S., Chea, S., Sovann, L., Sengdoeurn, Y., et al. (2020). Rapid metagenomic characterization of a case of imported COVID-19 in Cambodia. bio Rxiv preprint, 1–7. https://doi.org/10.1101/2020.03.02.968818.

  44. Deng, X., Achari, A., Federman, S., Yu, G., Somasekar, S., Bartolo, I., et al. (2020). Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nature Microbiology, 5, 1–12. https://doi.org/10.1038/s41564-019-0637-9.

    Google Scholar 

  45. https://geneticeducation.co.in/what-is-metagenomics-definition-steps-process-and-applications/#Advantages_of_metagenomics.

  46. Jessica, F. D., Natalie, K. C., Jennifer, R., Franco, P., & Aleisha, R. (2017). Metagenomics: The next culture-independent game changer. Frontiers in Microbiology, 8, 1069. https://doi.org/10.3389/fmicb.2017.01069.

    Google Scholar 

  47. Jacob, J. J., Veeraraghavan, B., Vasudevan, K., (2019). Metagenomic next-generation sequencing in clinical microbiology. Indian J Med Microbiol. 37(2), 133–140. doi: 10.4103/ijmm. IJMM_19_401. PMID: 31745012.

    Google Scholar 

  48. https://www.thermofisher.com/in/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-elisa.html#2

  49. https://www.centerforhealthsecurity.org/resources/COVID-19/serology/Serology-based-tests-for-COVID-19.html#sec1.

  50. https://microbeonline.com/elisa-test-for-antigenantibody-detection/.

  51. https://www.biomedomics.com.

  52. Engvall, E., & Perlmann, P. (1971). Enzyme linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 8, 871–875.

    Google Scholar 

  53. Kohler, C., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495–497.

    Google Scholar 

  54. Avrameas, S., & Uriel, J. (1996). Method of antigen and antibody labeling with enzymes and its immunodiffusion application. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences. D: Sciences Naturelles, 262, 2543–2545.

    Google Scholar 

  55. Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4–15.

    Google Scholar 

  56. Ye, F., Chen, L., Zhan, Z, et al. (2020). Development and clinical application of a rapid Igm-IgG combined antibody test for SARS-Cov infection diagnosis. Journal of Medical Virology, 92, 1518–1524.

    Google Scholar 

  57. Jokerst, C., Chung, J. H., Ackman, J. B., Carter, B., Colletti, P. M., Crabtree, T. D., et al. (2018). ACR Appropriateness Criteria® acute respiratory illness in immunocompetent patients. Journal of the American College of Radiology, 15(11S), S240–S251. Available at https://acsearch.acr.org/docs/69446/Narrative/.

    Google Scholar 

  58. Tenda, E. D., Yulianti, M., Asaf, M. M., Yunus, R. E., Septiyanti, W., Wulani, V., et al. (2020). The importance of chest CT scan in COVID-19: A case series. Acta Medica Indonesiana-Indonesian Journal of Internal Medicine, 52(1), 68–73.

    Google Scholar 

  59. Zhao, W., Zhong, Z., Xie, Q., Yu, J., & Liu, J. (2020). Relation between chest CT findings and clinical conditions of coronavirus diseases (COVID19) pneumonia: A multicentre study. AJR. American Journal of Roentgenology, 214(5), 1072–1077. https://doi.org/10.2214/AJR.20.22976.

    Google Scholar 

  60. Li, M. (2020). Chest CT features and their role in COVID-19. Radiology of Infectious Diseases, 7(2), 51–54. https://doi.org/10.1016/j.jrid.2020.04.001.

    Google Scholar 

  61. Kumar, R., Nagpal, S., Kausik, S., & Mendiratta, S. (2020). COVID-19 diagnostic approaches: Different roads to the same destination. Virus Disease, 31, 97–105. https://doi.org/10.1007/s13337-020=00599-7.

    Google Scholar 

Download references

Acknowledgments

We are very thankful to the Department of Pharmaceutical Sciences, Bhimtal Campus, Kumaun University, Nainital, Bhimtal, Uttarakhand, for their kind and valuable support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arya, R.K.K., Kausar, M., Bisht, D., Kumar, D., Sati, D., Rajpal, G. (2021). Recent Diagnostic Techniques for COVID-19. In: Kautish, S., Peng, SL., Obaid, A.J. (eds) Computational Intelligence Techniques for Combating COVID-19. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-68936-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68936-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68935-3

  • Online ISBN: 978-3-030-68936-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics