Skip to main content

Improved Lower Bounds for Permutation Arrays Using Permutation Rational Functions

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2020)

Abstract

We consider rational functions of the form V(x)/U(x), where both V(x) and U(x) are relatively prime polynomials over the finite field \(\mathbb {F}_q\). Polynomials that permute the elements of a field, called permutation polynomials (PPs), have been the subject of research for decades. Let \({\mathcal {P}}^1(\mathbb {F}_q)\) denote \(\mathbb {F}_q\cup \{\infty \}\). If the rational function, V(x)/U(x), permutes the elements of \({\mathcal {P}}^1(\mathbb {F}_q)\), it is called a permutation rational function (PRF). Let \(N_d(q)\) denote the number of PPs of degree d over \(\mathbb {F}_q\), and let \(N_{v,u}(q)\) denote the number of PRFs with a numerator of degree v and a denominator of degree u. It follows that \(N_{d,0}(q) = N_d(q)\), so PRFs are a generalization of PPs. The number of monic degree 3 PRFs is known [11]. We develop efficient computational techniques for \(N_{v,u}(q)\), and use them to show \(N_{4,3}(q) = (q+1)q^2(q-1)^2/3\), for all prime powers \(q \le 307\), \(N_{5,4}(q) > (q+1)q^3(q-1)^2/2\), for all prime powers \(q \le 97\), and give a formula for \(N_{4,4}(q)\). We conjecture that these are true for all prime powers q. Let M(nD) denote the maximum number of permutations on n symbols with pairwise Hamming distance D. Computing improved lower bounds for M(nD) is the subject of much current research with applications in error correcting codes. Using PRFs, we obtain significantly improved lower bounds on \(M(q,q-d)\) and \(M(q+1,q-d)\), for \(d \in \{5,7,9\}\).

S. Bereg—Research of the first author is supported in part by NSF award CCF-1718994.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bereg, S., Levy, A., Sudborough, I.H.: Constructing permutation arrays from groups. Des. Codes Crypt. 86(5), 1095–1111 (2017). https://doi.org/10.1007/s10623-017-0381-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Bereg, S., Malouf, B., Morales, L., Stanley, T., Sudborough, I.H., Wong, A.: Equivalence relations for computing permutation polynomials. arXiv e-prints arXiv:1911.12823 (2019)

  3. Bereg, S., Miller, Z., Mojica, L.G., Morales, L., Sudborough, I.H.: New lower bounds for permutation arrays using contraction. Des. Codes Crypt. 87(9), 2105–2128 (2019). https://doi.org/10.1007/s10623-019-00607-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Bereg, S., Mojica, L.G., Morales, L., Sudborough, H.: Constructing permutation arrays using partition and extension. Des. Codes Crypt. 88(2), 311–339 (2019). https://doi.org/10.1007/s10623-019-00684-z

    Article  MathSciNet  MATH  Google Scholar 

  5. Bereg, S., Morales, L., Sudborough, I.H.: Extending permutation arrays: improving MOLS bounds. Des. Codes Crypt. 83(3), 661–683 (2016). https://doi.org/10.1007/s10623-016-0263-y

    Article  MathSciNet  MATH  Google Scholar 

  6. Chu, W., Colbourn, C.J., Dukes, P.: Constructions for permutation codes in powerline communications. Des. Codes Crypt. 32(1–3), 51–64 (2004). https://doi.org/10.1023/b:desi.0000029212.52214.71

    Article  MathSciNet  MATH  Google Scholar 

  7. Colbourn, C., Kløve, T., Ling, A.C.: Permutation arrays for powerline communication and mutually orthogonal latin squares. IEEE Trans. Inf. Theory 50(6), 1289–1291 (2004). https://doi.org/10.1109/tit.2004.828150

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, X.: A classification of permutation polynomials of degree 7 over finite fields. Finite Fields Appl. 59, 1–21 (2019). https://doi.org/10.1016/j.ffa.2019.05.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, X.: Permutation polynomials of degree 8 over finite fields of characteristic 2. Finite Fields Their Appl. 64, 101662 (2020). https://doi.org/10.1016/j.ffa.2020.101662

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, X.: Permutation polynomials of degree 8 over finite fields of odd characteristic. Bull. Aust. Math. Soc. 101(1), 40–55 (2020). https://doi.org/10.1017/S0004972719000674

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferraguti, A., Micheli, G.: Full classification of permutation rational functions and complete rational functions of degree three over finite fields. Des. Codes Crypt. 88(5), 867–886 (2020). https://doi.org/10.1007/s10623-020-00715-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, F., Yang, Y., Ge, G.: An improvement on the Gilbert-Varshamov bound for permutation codes. IEEE Trans. Inf. Theory 59(5), 3059–3063 (2013). https://doi.org/10.1109/tit.2013.2237945

    Article  MathSciNet  MATH  Google Scholar 

  13. Hou, X.: Permutation polynomials over finite fields - a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015). https://doi.org/10.1016/j.ffa.2014.10.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Janiszczak, I., Lempken, W., Östergård, P.R.J., Staszewski, R.: Permutation codes invariant under isometries. Des. Codes Crypt. 75(3), 497–507 (2014). https://doi.org/10.1007/s10623-014-9930-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Janiszczak, I., Staszewski, R.: Isometry invariant permutation codes and mutually orthogonal latin squares. J. Combin. Des. 27(9), 541–551 (2019). https://doi.org/10.1002/jcd.21661

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, J., Chandler, D.B., Xiang, Q.: Permutation polynomials of degree 6 or 7 over finite fields of characteristic 2. Finite Fields Appl. 16, 406–419 (2010). https://doi.org/10.1016/j.ffa.2010.07.001

    Article  MathSciNet  MATH  Google Scholar 

  17. Lidl, R., Mullen, G.L.: When does a polynomial over a finite field permute the elements of the fields? II. Am. Math. Monthly 100(1), 71–74 (1993). https://doi.org/10.1080/00029890.1993.11990369

    Article  MathSciNet  MATH  Google Scholar 

  18. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994). https://doi.org/10.1017/cbo9781139172769. Revised edn.

    Book  MATH  Google Scholar 

  19. Micheli, G., Neri, A.: New lower bounds for permutation codes using linear block codes. IEEE Trans. Inf. Theory 66(7), 4019–4025 (2020). https://doi.org/10.1109/tit.2019.2957354

    Article  MathSciNet  MATH  Google Scholar 

  20. Pavlidou, N., Vinck, A.H., Yazdani, J., Honary, B.: Power line communications: state of the art and future trends. IEEE Commun. Mag. 41(4), 34–40 (2003). https://doi.org/10.1109/mcom.2003.1193972

    Article  Google Scholar 

  21. Shallue, C.J., Wanless, I.M.: Permutation polynomials and orthomorphism polynomials of degree six. Finite Fields Appl. 20, 84–92 (2013). https://doi.org/10.1016/j.ffa.2012.12.003

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, X., Zhang, Y., Yang, Y., Ge, G.: New bounds of permutation codes under Hamming metric and Kendall’s \(\tau \)-metric. Des. Codes Crypt. 85(3), 533–545 (2016). https://doi.org/10.1007/s10623-016-0321-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, L., Chen, K., Yuan, L.: New constructions of permutation arrays. arXiv e-prints (2006). https://arxiv.org/pdf/0801.3987.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hal Sudborough .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bereg, S., Malouf, B., Morales, L., Stanley, T., Sudborough, I.H. (2021). Improved Lower Bounds for Permutation Arrays Using Permutation Rational Functions. In: Bajard, J.C., Topuzoğlu, A. (eds) Arithmetic of Finite Fields. WAIFI 2020. Lecture Notes in Computer Science(), vol 12542. Springer, Cham. https://doi.org/10.1007/978-3-030-68869-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68869-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68868-4

  • Online ISBN: 978-3-030-68869-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics