Skip to main content

Grain Legumes and Their By-Products: As a Nutrient Rich Feed Supplement in the Sustainable Intensification of Commercial Poultry Industry

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 51

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 51))

  • 287 Accesses

Abstract

Poultry farming is probably the rapid growing and most adaptable practice which have a major role in improving the global food security. In tropics, a large number of small scale farmers adopt poultry rearing for domestic consumption and contribute significantly to food security. In poultry farming, feeding is an important aspect, which needs major input cost. The banning of diets containing bone meal and meat for animals besides increase in the feed cost of regular feed components like fish meal and maize led to search for an alternative low cost protein and energy rich sources that economically benefits the farmers. Due to high levels of protein in grain legumes, they are considered as potent meal to meet the demand of plant proteins for poultry diets.

In the present review, we view the present level of awareness of using grain legumes in poultry nutrition. It presents and discusses the potential nutritional importance of broad spectrum of grain legumes as poultry feed. The effect and impact of dietary fiber and anti-nutritional factors present in different legumes for consumption, digestion and growth performance of poultry species were also reviewed in this study. Subsequently, different methods like heat, chemical or biological treatments to minimize the impact of different anti-nutritional factors of plant origin were discussed to improve their efficacy for low input farming systems. In this chapter, utilization of by-products produced during the processing of pulses as potential source of poultry feed was also described. Finally, pulses along with their by-products serve as nutrient rich feed to support organic poultry farming system that indirectly confer global food security and perform a crucial role in the establishment of endurable growth because of their economic and ecological values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbeddou S, Rihawi S, Hess HD, Iniguez L, Mayer AC, Kreuzer M (2011) Nutritional composition of lentil straw, vetch hay, olive leaves, and saltbush leaves and their digestibility as measured in fat-tailed sheep. Small Rumin Res 96:126–135. https://doi.org/10.1016/j.smallrumres.2010.11.017

    Article  Google Scholar 

  • Abbel-Monein MA (2013) Effect of using green beans processing by-products with and without enzyme supplementation on broilers performance and blood parameters. J Agrobiol 30(1):43–54. https://doi.org/10.2478/agro-2013-0005

    Article  Google Scholar 

  • Abdulla JM, Rose SP, Mackenzie AM, Pirgozliev VR (2017) Feeding value of field beans (Vicia faba L. var. minor) with and without enzyme containing tannase, pectinase and xylanase activities for broilers. Arch Anim Nutr 71:150–164. https://doi.org/10.1080/1745039X.2017.1283823

    Article  CAS  PubMed  Google Scholar 

  • Adesogan AT, Chikagwa-Malunga SK, Salawu MB, Kim SC (2004) The in vitro digestibility, gas production and fermentation characteristics of Mucuna pruriens, and soybean mealated with or without L-dopa. J Anim Sci 82(1):212–216

    Google Scholar 

  • Agugo UA, Onimawo IA (2009) Heat treatment on the nutritional value of green gram. Electron J Environ Aaric Food Chem 8:924–930

    CAS  Google Scholar 

  • Akande KE, Abubakar MM, Adegbola TA, Bogoro SE, Doma UD (2010) Chemical evaluation of the nutritive quality of pigeon pea [Cajanus cajan (L.) Millsp]. Int J Poult Sci 9:63–65. https://doi.org/10.3923/ijps.2010.63.65

    Article  CAS  Google Scholar 

  • Akanji AM, Fasina OE, Ogungbesan AM (2016) Effect of raw and processed cowpea on growth and heamatological profile of broiler chicken. Bangaldesh J Anim Sci 45(1):62–68. https://doi.org/10.3329/bjas.v45i1.27490

    Article  Google Scholar 

  • Akinmutimi AH, Okwu ND (2006) Effect of quantitative substitution of cooked Mucuna utilis seed meal for soybean meal in broiler finisher diet. Int J Poult Sci 5(5):477–481. https://doi.org/10.3923/ijps.2006.477.481

    Article  Google Scholar 

  • Akpinar N, Akpinar MA, Turkoglu S (2001) Total lipid content and fatty acid composition of the seeds of some Vicia L. species. Food Chem 74:449–453. https://doi.org/10.1016/s0308-8146(01)00162-5

    Article  CAS  Google Scholar 

  • Alagawany M, Elnesr SS, Farag MR, El-Hack M EA, Khafaga AF, Taha AE, Dhama K (2019) Omega-3 and Omega-6 fatty acids in poultry nutrition: effect on production performance and health. Animals 9(8)573. https://doi.org/10.3390/ani9080573

  • Amaefule KU, Nwagehara NN (2004) The effect of processing on the utilisation of pigeon pea (Cajanus cajan) seed meal and pigeon pea seed meal based diets by pullets. Int J Poult Sci 3:543–546. https://doi.org/10.3923/ijps.2004.543.546

    Article  Google Scholar 

  • Amaefule KU, Ojewola GS, Ironkwe MC (2006) Inclusion level and prolonged feeding of raw or processed pigeon pea (Cajanus cajan) seed meal as protein source for pullets. Int J Poult Sci 4:289–295. https://doi.org/10.3923/ijps.2006.289.295

    Article  Google Scholar 

  • Amaefule KU, Ukpanah UA, Ibok AE (2011) Performance of starter broilers fed raw pigeon pea [Cajanus cajan (L.) Millsp.] seed meal diets supplemented with lysine and or methionine. Int J Poult Sci 10:205–211. https://doi.org/10.3923/ijps.2011.205.211

    Article  CAS  Google Scholar 

  • Ameen OM, Fatope OM, Usman LA, Adebayo SA (2005) Bioactive metabolites in improved cowpea seeds. Afr J Biotechnol 4:513–516

    Google Scholar 

  • Ani AO (2008) The feeding value of processed velvet bean (Mucuna pruriens) for pullet chicks. J Trop Agric Food Environ Ext 7(2):149–155. https://doi.org/10.4314/as.v7i2.1597

    Article  Google Scholar 

  • Araba M, Dale NM (1990) Evaluation of protein solubility as an indicator of under processing soybean meal. Poult Sci 69:1749–1752. https://doi.org/10.3382/ps.0691749

    Article  Google Scholar 

  • Arif M, Rehman A, Saeed M, Abd EL-Hack ME, Alagawany M, Abbas H, Arian MA, Fazlani SA, Abbasi IHR, Ayasan T (2017) Effect of different processing methods of pigeon pea (Cajanus cajan) on growth performance, carcass traits, and blood biochemical and hematological parameters of broiler chickens. Turk J Vet Anim Sci 41:38–45

    Article  CAS  Google Scholar 

  • Arora SK (1995) Composition of legume grains. In: D’Mello JPF, Devendra C (eds) Tropical legumes in animal nutrition. D’Mello Cab International, Wallingford, pp 67–93

    Google Scholar 

  • Ayala-Burgos AJ, Herrera-Diaz PE, Castillo-Caamal JB, RosadoRivas CM, Osornio-Munoz L, Castillo-Caamal AM (2003) Rumen degradabiility and chemical composition of the velvet bean (Mucuna spp.) grain and husk. Trop Subtrop Agroecosyst 1:71–75

    Google Scholar 

  • Batal AB (2009) How much DDGS for poultry? Feed Int 30:18–19

    Google Scholar 

  • Bejiga G (2006) Lens culinaris Medik. Record from Protabase. In: Brink M, Belay G (eds) PROTA (Plant Resources of Tropical Africa/Ressources vegetales de l’Afrique tropicale). PROTA Foundation, Wageningen

    Google Scholar 

  • Bennett C (2002) Organic diets for small poultry flocks [Internet]. C 2002–2014. [cited 2014 Jul 14]. Available from: http://en.engormix.com/MA-poultry-industry/nutrition/articles/organic-diets-small-poultry-t105/p0.html

  • Binalay JP (2012) Effect of ground mung bean on the performance of broiler. Benguet State University, La Trinidad

    Google Scholar 

  • Blasi DA, Drouillard J, Titgemeyer EC, Paisley SI, Brouk MJ (2000) Soybean hulls, composition and feeding value for beef and dairy cattle. Contribution No. 00-79-E. Kansas State University. https://www.bookstore.ksre.ksu.edu/pubs/MF2438.pdf

  • Bond DA, Lawes DA, Hawtin GC, Saxena MC, Stephens JS (1985). http://www.hort.purdue.edu/newcrop/cropfactsheets/fababean.html. Accessed June 2005

  • Bressani R (2002) Factors influencing nutritive value in food grain legumes: Mucuna compared to other grain legumes. In: Flores M, Eilitta M, Myhrman R, Carew LB, Carsky RJ (eds) Food and feed from Mucuna: current uses and the way forward. Proceedings of an international workshop, vol 1. CIDICCO, CIEPCA, Worlds Hunger Research Centre, Tegucigalpa, pp 164–188

    Google Scholar 

  • Cakmakci S, Acikgoz E (1994) Components of seed and straw yield in common vetch (Vicia sativa L.). Plant Breed 113:71–74. https://doi.org/10.1111/j.1439-0523.1994.tb00704.x

    Article  Google Scholar 

  • Canon L, Carre B (1989) Effect of autoclaving on the metabolisable energy value of smooth peas (Pisum Sativum) in growing chicks. Anim Feed Sci Technol 26:337–345. https://doi.org/10.1016/0377-8401(89)90045-X

    Article  Google Scholar 

  • Carew LB, Gernat AG (2006) Use of velvet beans, Mucuna spp. as a feed ingredient for poultry: a review. Worlds Poult Sci J 62(1):131–144. https://doi.org/10.1079/WPS200590

    Article  Google Scholar 

  • Carle R, Keller P, Schieber A, Rentschler C, Katzschner T, Rauch D, et al (2001) Method for obtaining useful materials from the by-products of fruit and vegetable processing. Patent application, WO 01/78859 A1

    Google Scholar 

  • Castanon JIR, Perez-Lanzac J (1990) Substitution of fixed amounts of soyabean meal for field beans (Vicia faba), sweet lupins (Lupinus albus), cull peas (Pisum sativum) and vetchs (Vicia sativa) in diets for high performance laying Leghorn hens. Br Poult Sci 31:173–180. https://doi.org/10.1080/00071669008417243

    Article  Google Scholar 

  • Castell AG, Cliplef RL (1990) Methionine supplementation of barley diets containing lentils (Lens culinaris) or soybean meal: live performance and carcass responses by gilts fed ad libitum. Can J Anim Sci 70(1):329–332. https://doi.org/10.4141/cjas90-041

    Article  CAS  Google Scholar 

  • Castell AG, Guenter W, Igbasan FA (1996) Nutritive value of peas for nonruminant diets. Anim Feed Sci Technol 60:209–227. https://doi.org/10.1016/0377-8401(96)00979-0

    Article  Google Scholar 

  • Castillo AD, Gallo SMH, Peralta RC, Solis T (2016) Economic analysis and carcasses quality of broiler chickens, fed with Cajanus cajan. Glob Adv Res J Agric Sci 5:008–013

    Google Scholar 

  • Chakam VP, Teguia A, Tchoumboue J (2008) Performance of finisher broiler chicks as affected by graded levels of cooked cowpeas (Vigna unguiculata) in the grower-finisher diet. Bull Anim Prod Afr 56:251–258

    Google Scholar 

  • Chavan JK, Kadam SS, Salunkhe DK (1989) Chickpea. In: Salunkhe DK, Kadam SS (eds) CRC handbook of world food legumes: nutritional chemistry, processing technology and utilization, vol I. CRC Press, Inc, Boca Raton, pp 247–288

    Google Scholar 

  • Chikagwa-Malunga SK, Adesogan AT, Sollenberger LE, Phatak SC, Szabo NJ, Kim SC, Huisden CM, Littell RC (2009) Nutritional characterization of Mucuna pruriens. 4. Does replacing soybean meal with Mucuna pruriens in lamb diets affect ruminal, blood and tissue l-dopa concentrations. Anim Feed Sci Technol 148(2–4):124–137. https://doi.org/10.1016/j.anifeedsci.2008.03.003

    Article  CAS  Google Scholar 

  • Choct M (2004) The net energy value of commonly used plant ingredients for poultry in Australia. RIRDC Publication No 04/RIRDC Project No UNE-82J, pp 1–66

    Google Scholar 

  • Christodoulou V, Bambidis VA, Hucko B, Iliadis C, Mudrik Z (2006) Nutritional value of chickpeas in rations of broiler chickens. Arch Geflugelk 70:112–118

    CAS  Google Scholar 

  • Christodoulou V, Bampidis VA, Hucko B, Mudrik Z (2006b) The use of extruded chickpeas in diets of broiler turkeys. Czech J Anim Sci 51:416–423

    Article  CAS  Google Scholar 

  • Chunmei G, Hongbin P, Zewei S, Guixin Q (2010) Effect of soybean variety on anti-nutritional factors content, and growth performance and nutrients metabolism in rat. Int J Mol Sci 11:1048–1056. https://doi.org/10.3390/ijms11031048

    Article  CAS  Google Scholar 

  • Clute O (1896) Cassava, the velvet bean, prickly comfrey taro, Chinese yam, canaigre, alfalfa, flat pea, sachaline. Fla Agric Exp Station Bull 35:327–354

    Google Scholar 

  • Coboru (2011) Descriptive register of varieties (in Polish). Slupia Wielka (Poland)

    Google Scholar 

  • Coertze AF, Venter S (1996) A.3-Cowpeas. Indigenous seed crops. Agricultural Research Council, pp 1–5

    Google Scholar 

  • Cole JT, Fahey GC Jr, Merchen NR, Patil AR, Murray SM, Hussein HS, Brent JL Jr (1999) Soybean hulls as a source of dietary fiber for dogs. J Anim Sci 77:917–924. https://doi.org/10.2527/1999.774917x

    Article  CAS  PubMed  Google Scholar 

  • Collins CL, Henman DJ, King RH, Dunshea FR (2002) Common vetch (Vicia sativa cv Morava) is an alternative protein source in pig diets. Proc Nutr Soc Aust 26:S249

    Google Scholar 

  • Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge IJ, Peters M, Schultze-Kraft R (2005) Tropical forages: an interactive selection tool. CSIRO, DPI& F(Qld), CIAT and ILRI, Brisbane

    Google Scholar 

  • Cowieson AJ, Acamovic T, Bedford MR (2003) Supplementation of diets containing pea meal with exogenous enzymes: effects on weight gain, feed conversion, nutrient digestibility and gross morphology of the gastrointestinal tract of growing broiler chicks. Br Poult Sci 44:427–437. https://doi.org/10.1080/00071660310001598292

    Article  CAS  PubMed  Google Scholar 

  • Creswell DC (1981) Nutritional evaluation of mung beans (Phaseolus aureus) for young broiler chickens. Poult Sci 60(8):1905–1909. https://doi.org/10.3382/ps.0601905

    Article  Google Scholar 

  • Daghir NJ (2008) Poultry production in hot climates, 2nd edn. CABI, Oxfordshire, p 180

    Book  Google Scholar 

  • Dahouda M, Toleba SS, Youssao AKI, Mama Ali AA, Dangou-Sapoho RK, Ahounou SG, Hambuckers A, Hornick JL (2009) The effects of raw and processed Mucuna pruriens seed based diets on the growth parameters and meat characteristics of Benin local guinea fowl (Numida meleagris, L). Int J Poult Sci 8(9):882–889. https://doi.org/10.3923/ijps.2009.882.889

    Article  CAS  Google Scholar 

  • Dalgetty DD, Baik BK (2006) Fortification of bread with hulls and cotyledon fibers isolated from peas, lentils and chickpea. Cereal Chem 83(3):269–274. https://doi.org/10.1094/CC-83-0269

    Article  CAS  Google Scholar 

  • Daniel mierlita (2015) The effect of lupine seed in broiler diet on animal performance and fatty acids profile of their meat. Bull UASVM Anim Sci Biotechnol 72(2). https://doi.org/10.15835/buasvmcn-asb:11375.9

  • Darre MJ, Minior DN, Tatake JG, Ressler C (1998) Nutritional evaluation of detoxified and raw common vetch seed (Vicia sativa L.) using diets of broilers. J Agric Food Chem 46:4675–4679. https://doi.org/10.1021/jf980931i

    Article  CAS  Google Scholar 

  • Darre MJ, Minior DN, Tatake JG, Ressler C (1999) Nutritional evaluation of detoxified and raw common vetch seed (Vicia sativa L.) using diets of broilers. J Agric Food Chem 46:4675–4679

    Google Scholar 

  • Defang HF, Teguia A, Awah-Ndukum J, Kenfack A, Ngoula F et al (2008) Performance and carcass characteristics of broilers fed boiled cowpea (Vigna unguiculata L Wal) and or black common bean (Phaseolus vulgaris) meal diets. Afr J Biotechnol 7:1351–1356. https://doi.org/10.5897/AJB07.816

    Article  Google Scholar 

  • DePeters EJ, Medrano JF, Bath DL (1989) A nutritional evaluation of mixed winter cereals with vetch utilized as silage or hay. J Dairy Sci 72:3247–3254

    Article  Google Scholar 

  • Deshpande SS (1992) Food legumes in human nutrition. A personal perspective. Crit Rev Food Sci Nutr 32:333–363. https://doi.org/10.1080/10408399209527603

    Article  CAS  PubMed  Google Scholar 

  • Duke JA (1981) Handbook of legumes of world economic importance. Plenum Press, New York

    Book  Google Scholar 

  • Ecocrop (2011) Ecocrop database. FAO, Rome. Available at: http://ecocrop.fao.org/ecocrop/srv/en/home

  • Eilitta M, Carsky RJ (2003) Efforts to improve the potential of Mucuna as a food and feed crop: background to the workshop. Trop Subtrop Agroecosyst 1:47–55. http://www.redalyc.org/articulo.oa?id=93911288002

    Google Scholar 

  • El-Adawy TA (1996) Chemical nutritional and functional properties of mung bean protein isolate and concentrate. Minufiya J Agric Res 21:657–672

    Google Scholar 

  • Eljack BH, Fadlalla I, Ibrahim MT (2010) The effect of feeding cowpea (Vigna unguiculata) on broiler chickens performance and some carcass quality measurements. Coll Vet Med Anim Prod Sudan Univ Sci Technol 56(124):175–178

    Google Scholar 

  • Embaye TN, Ameha N, Yusuf Y (2018) Effect of cowpea (Vigna unguiculata) grain on growth performance of Cobb 500 broiler chickens. Int J Livest Prod 9(12):326–333. https://doi.org/10.5897/IJLP2017.0424

    Article  CAS  Google Scholar 

  • Emefiene ME, Joshua VI, Nwadike C, Yaroson AY, Zwalnan NDE (2014) Profitability analysis of pigeon pea (Cajanus cajan) production in Riyom LGA of Plateau State. Int Lett Nat Sci 13:73–88. https://doi.org/10.18052/www.scipress.com/ILNS.18.73

    Google Scholar 

  • Emenalom OO, Udedibie ABI, Esonu BO, Etuk EB (2005) Evaluation of processed velvet bean (Mucuna pruriens) as a feed ingredient in starter diets for broiler chickens. Jpn J Poult Sci 42(4):301–307. https://doi.org/10.2141/jpsa.42.301

    Article  CAS  Google Scholar 

  • Emenalom OO, Udedibie ABI, Esonu BO, Etuk EB (2006) Cooking in local alkaline solution as a method for improving the nutritive value of velvet bean (Mucuna pruriens) for broilers. In: Rege JEO, Nyamu AM, Sendalo D (eds) The role of biotechnology in animal agriculture to address poverty in Africa: opportunities and challenges. Proceedings of the fourth All-Africa Conference on Animal Agriculture, Arusha, Tanzania, 20–24 September 2005, pp 239–245

    Google Scholar 

  • Emiola AI, Ologhobo AD, Gous RM (2007) Influence of processing of mucuna (Mucuna pruriens var utilis) and kidney bean (Phaseolus vulgaris) on the performance and nutrient utilization of broiler chickens. J Poult Sci 44(2):168–174. https://doi.org/10.2141/jpsa.44.168

    Article  CAS  Google Scholar 

  • Enneking D (1994) The toxicity of Vicia species and their utilization as grain legumes. PhD thesis

    Google Scholar 

  • Fageria NK, Baligar VC, Jones CA (1990) Common bean and cowpea. In: Growth and minerals nutrition of field crops. Dekker, New York, pp 281–381

    Google Scholar 

  • FAO (1989) Report of the global consultation on agricultural extension. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2004) The state of agricultural commodity markets 2004. FAO, Rome

    Google Scholar 

  • FAO (2006) Livestock’s long shadow: environmental issues and options, by Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. FAO, Rome

    Google Scholar 

  • FAO (2010) FAO statistical yearbook. Accessed on 30 August

    Google Scholar 

  • FAO (2012) FAOSTAT. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2013) FAOSTAT online database. Available at: http://www.fao.org

  • FAO (Food and Agriculture Organization) (1993) FAO yearbook. Production 1992 (vol 46). FAO, Rome, pp 105–115

    Google Scholar 

  • Farhoomand P (2006) Performance and carcass traits of lentil seed fed broilers. Indian Vet J 83(2):187–190

    Google Scholar 

  • Farougou S, Kpodekon M, Tokannou R, Djossou VD, Akoutey A, Youssao IAK (2006) Utilisation de la farine de Mucuna pruriens (L.) DC dans l’aliment de croissance des pintades (Numida meleagris). Rev Med Vet 157(10):502–508

    CAS  Google Scholar 

  • Farran MT, Uwayjan MG, Miski AMA, Sleiman FT, Adada FA, Ashkarian VM, Thomas OP (1995) Effect of feeding raw and treated common vetch seed (Vicia sativa) on the performance and egg quality parameters of laying hens. Poult Sci 74(10):1630–1635. https://doi.org/10.3382/ps.0741630

    Article  CAS  PubMed  Google Scholar 

  • Farran MT, Dakessian PB, Darwish AH, Uwayjan MG, Dbouk HK, Sleiman FT, Ashkarian VM (2001) Performance of broilers and production and egg quality parameters of laying hens fed 60% raw or treated common vetch (Vicia sativa) seeds. Poult Sci 80:203–208. https://doi.org/10.1093/ps/80.2.203

    Article  CAS  PubMed  Google Scholar 

  • Farrell DJ (1996) How effective is “effective energy” for poultry? In: Aust. Poult. Sci Symp. Feb University of Sydney, Australia, pp 169–173

    Google Scholar 

  • Farrell DJ, Perez-Maldonado RA, Mannion PF (1999) Optimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets. II. Broiler experiments. Br Poult Sci 40:674–680. https://doi.org/10.1080/00071669987070

    Article  CAS  PubMed  Google Scholar 

  • Fawzi H, Ibrahim I (1967) Economical fattening of kenana calves on Gezira agricultural by-products. Sudan J Vet Sci Anim Hus 8:12–123

    Google Scholar 

  • FEFAC (European Feed Manufacturers Federation) (2007) Industrial compound feed production. FEFAC Secretariat General, Brussels, May 2007

    Google Scholar 

  • Fırıncıoglu HK, Tate M, Unal S, Dogruyol S, Ozcan D (2007) A selection strategy for low toxin vetches. Turk J Agric For 31:303–311

    Google Scholar 

  • Ford R, Rubeena RRJ, Materne M, Taylor PWJ (2007) Genome mapping and molecular breeding in lentil:lentil. In: Kole C (ed) Genome mapping and molecular breeding. Pulse, sugar and starch crops, vol 3. Springer, Heidelberg/Berlin/New York/Tokyo, pp 91–108

    Google Scholar 

  • Ford R, Maddeppungeng AM, Taylor PWJ (2008) Vetch. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic legume seeds and forages, vol 9. Blackwell Publishing, Oxford, pp 163–170

    Chapter  Google Scholar 

  • Francis CM, Enneking D, Abd El Moneim AM (1999) When and where will vetches have an impact as seed legumes? In: Proceedings of the 3rd international food legume research conference, Adelaide, Australia, pp 375–384

    Google Scholar 

  • Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Chem 44:6–29. https://doi.org/10.1021/jf9400167

    Article  CAS  Google Scholar 

  • Ganzon-Naret ES (2014a) Evaluation of graded levels of cooked pigeon pea seed meal (Cajanus cajan) on the performance and carcass composition of Asian sea bass (Lates calcarifer). Anim Biol Anim Hus 6:1–9

    Google Scholar 

  • Ganzon-Naret ES (2014b) Use of raw and heat-treated mung bean seeds (Phaseolus aureus) as replacement for soybean meal protein in the diets for sea bass, Lates calcarifer fingerlings in tanks: effects on growth performance, nutrient utilization and survival rate. AACL Int J Bioflux Soc 7:458–467

    Google Scholar 

  • Garduno-Castro Y, Espinoza-Ortega A, Gonzalez-Esquivel CE, Mateo-Salazar B, Arriaga-Jordan CM (2009) Intercropped oats (Avena sativa)-common vetch (Vicia sativa) silage in the dry season for small-scale dairy systems in the Highlands of Central Mexic. Trop Anim Health Prod 41:827–834. https://doi.org/10.1007/s11250-008-9258-7

    Article  CAS  PubMed  Google Scholar 

  • Gatel F (1994) Protein quality of legume seeds for non ruminant animals: a literature review. Anim Feed Sci Technol 45:317–348. https://doi.org/10.1016/0377-8401(94)90036-1

    Article  CAS  Google Scholar 

  • Gatta D, Russo C, Giuliotti L, Mannari C, Picciarelli P, Lombardi L, Giovannini L, Ceccarelli N, Mariotti L (2013) Influence of partial replacement of soya bean meal by faba beans or peas in heavy pigs diet on meat quality, residual anti-nutritional factors and phytoestrogen content. Arch Anim Nutr 67:235–247. https://doi.org/10.1080/1745039X.2013.801137

    Article  CAS  PubMed  Google Scholar 

  • Geers R, Madec F (2006) Livestock production and society. Wageningen Academic Publishers, Wageningen

    Book  Google Scholar 

  • Gemede HF, Ratta N (2014) Antinutritional factors in plant foods: potential health benefits and adverse effects. Int J Nutr Food Sci 3:284–289. https://doi.org/10.11648/j.ijnfs.20140304.18

    Article  Google Scholar 

  • George AS, Elliot R (1986) Nutritional value of pigeonpea (Cajanus cajan) in poultry diets. Potential for Pigeonpea in Thailand, Indonesia and Burma. In: Wallis ES, Woolcock RF, Byth DE (eds) Coarse Grains, Pulses, Roots and Tuber Crops (CGPRT) Centre for Research and Develoment in the Humid Tropics of Asia and the Pacific, CGPRT No.15, 75 pp

    Google Scholar 

  • Gladstones JS (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, p 140

    Chapter  Google Scholar 

  • Gohl B (1982) Les aliments du betail sous les tropiques. FAO, Division de Production et Sante Animale, Roma

    Google Scholar 

  • Gomez C (2004) Cowpea: post-harvest operations. In: Mejia (ed) Post-harvest compendium. AGST, FAO, Rome

    Google Scholar 

  • Graham KK, Kerley MS, Firman JD, Allee GL (2002) The effect of enzyme treatment of soybean meal on oligosaccharide disappearance and chick growth performance. Poult Sci 81:1014–1019. https://doi.org/10.1093/ps/81.7.1014

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Pan H, Sun Z, Qin G (2010) Effect of soybean variety on antinutritional factors content, and growth performance and nutrients metabolism in rat. Int J Mol Sci 11:1048–1056. https://doi.org/10.3390/ijms11031048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gul M, Yoruk MA, Macit M, Esenbuga N, Karaoglu M, Aksakal V, Aksu MI (2005) The effects of diets containing different levels of common vetch (Vicia sativa) seed on fattening performance, carcass and meat quality characteristics of Awassi male lambs. J Sci Food Agric 85(9):1439–1443. https://doi.org/10.1002/jsfa.2120

    Article  CAS  Google Scholar 

  • Habibullah AM, Shah HU (2007) Proximate and mineral composition of mung beans. Sarhad J Agric 23:463–466

    Google Scholar 

  • Hassan SM (2016) Effects of adding different dietary levels of raw mung bean (Phaseolus aereus) on productive performance and egg quality of laying hens. Int J Poult Sci 15:271–276. https://doi.org/10.3923/ijps.2016.271.276

    Article  CAS  Google Scholar 

  • Hess V, Fickler J, Fontaine J, Heimbeck W (2006) AminoDat 3.0- amino acid composition of feedstuffs. Evonik-Degussa GmbH, Health and Nutrition, Hanau

    Google Scholar 

  • Hughes RJ, Choct M, Kocher A, Van Barneveld RJ (2000) Effect of food enzymes on AME and composition of digesta from broiler chickens fed on diets containing non-starch polysaccharides isolated from lupin kernel. Br Poult Sci 41:318–323. https://doi.org/10.1080/713654936

    Article  CAS  PubMed  Google Scholar 

  • Hussain I, Burhanddin M (2011) Optimization of germination conditions for germinated mung bean flour by response surface methodology. Afr J Food Sci Technol 2:232–239

    Google Scholar 

  • Huyghebaert G, Munter GD, Groote GD (1988) The metabolisable energy (AMEn) of fats for broilers in relation to their chemical composition. Anim Feed Sci Technol 20:45–58. https://doi.org/10.1016/0377-8401(88)90126-5

    Article  Google Scholar 

  • Igbasan FA, Guenter W (1996) The evaluation and enhancement of the nutritive value of yellow-green- and brown-seeded pea cultivars for unpelleted diets given to broiler chickens. Anim Feed Sci Technol 63(1–4):9–24. https://doi.org/10.1016/S0377-8401(96)01045-0

    Article  CAS  Google Scholar 

  • Igbasan FA, Guenter W (1997) The influence of micronization, dehulling and enzyme supplementation on the nutritional value of peas for laying hens. Poult Sci 76:331–337. https://doi.org/10.1093/ps/76.2.331

    Article  CAS  PubMed  Google Scholar 

  • Iliadis C (2001) Evaluation of six chickpea varieties for seed yield under autumn and spring sowing. J Agric Sci (Camb) 137:439–444. https://doi.org/10.1017/S0021859601001502

    Article  Google Scholar 

  • INRA (Institut Scientifique de Recherche Agronomique) (2004) Tables of composition and nutritional value of feed materials. In: Sauvant D, Perez JM, Tran G (eds) Wageningen Academic Publishers, 2nd ed, p 186

    Google Scholar 

  • Iyayi EA, Kluth H, Rodehutscord M (2006) Chemical composition, anti-nutritional constituents, pre-caecal crude protein and amino acid digestibility in three unconventional tropical legumes in broilers. J Sci Food Agric 86(13):2166–2171. https://doi.org/10.1002/jsfa.2592

    Article  CAS  Google Scholar 

  • Jain KC, Sherma P, Gupta SC, Reddy LJ, Singh L (1980) Breeding for vegetable-type Pigeon peas. In: Proceedings of the international workshop on pigeon peas (ICRISAT), vol 2, Patachera, India, pp 165

    Google Scholar 

  • Jambunathan R., Hall SD, Sudhir P, Rajan V, Sadhana V (1991) Uses of tropical grain legumes. In: Proceedings of a consultants meeting, 27–30 Mar 1989

    Google Scholar 

  • Jansen G, Jurgens HU, Schliephake E, Seddig S, Ordon F (2015) Effects of growing system and season on the alkaloid content and yield of different sweet L. angustifolius genotypes. J Appl Bot Food Qual 88:1–4. https://doi.org/10.5073/JABFQ.2015.088.001.Choct

    Article  Google Scholar 

  • Jeroch H (1998) Prufung von DL-Methionin – supplementen zu erbsenreichen futtermischungen in der broilerkükenmast [The study of DL-methionine additives in chicken broiler diets with high level of peas]. Vet Med Zoot 5:93–97

    Google Scholar 

  • Jezierny D, Mosenthin R, Bauer E (2010) The use of grain legumes as a protein source in pig nutrition: a review. Anim Feed Sci Technol 157:11–128. https://doi.org/10.1016/j.anifeedsci.2010.03.001

    Article  CAS  Google Scholar 

  • Juodka R, Nainiene R, Juskiene V, Juska R, Stuoge I (2016) Effects of different amounts of field peas (Pissum sativum L.) in the diets for turkeys on meat qualities. J Appl Anim Res 44(1):150–157. https://doi.org/10.1080/09712119.2015.1021810

    Article  CAS  Google Scholar 

  • Kaczmarek SA, Kasprowicz-potocka M, Hejdysz M, Mikula R, Rutkowski A (2014) The nutritional value of narrow-leafed lupin (Lupinus angustifolius) for broilers. J Anim Feed Sci 23:160–166

    Article  Google Scholar 

  • Karri VR, Nalluri N (2017) Pigeon pea (Cajanus cajan L.) by-products as potent natural resource to produce protein rich edible food products. Int J Curr Agric Sci 7(7):229–236

    Google Scholar 

  • Karr-Llientha LK, Kadzere CT, Grieshop CM, Fahey GC (2005) Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: a review. Livest Prod Sci 97:1–12. https://doi.org/10.1016/j.livprodsci.2005.01.015

    Article  Google Scholar 

  • Katogianni I, Zoiopoulos PE, Adamidis C, Fegeros K (2008) Comparison of two broiler genotypes grown under the provisions of EU organic legislation. Eur Poult Sci 72:116–120. http://62.217.125.90/xmlui/handle/123456789/4125

    CAS  Google Scholar 

  • Kay DE (1979) Food legumes. Tropical Products Institute, London, pp 273–281. https://trove.nla.gov.au/version/31204775

  • Kaya H, Celebi S, Macit M, Geyikoglu F (2011) The effects of raw and physical processed common vetch seed (Vicia sativa) on laying performance, egg quality, metabolic parameters and liver histopatology of laying hens. Asian Australas J Anim Sci 24:1425–1434. https://doi.org/10.5713/ajas.2011.11041

    Article  CAS  Google Scholar 

  • Kaya A, Yoruk AM, Esenbuga N, Temelli A, Ekinci O (2013) The effect of raw and processed common vetch seed (Vicia sativa) added to diets of laying hens on performance, egg quality, blood parameters and liver histopathology. J Poult Sci 50:228–236. https://doi.org/10.2141/jpsa.0120013

    Article  CAS  Google Scholar 

  • Kerley MS, Allee GL (2003) Modifications in soybean seed composition to enhance animal feed use and value: moving from dietary ingredient to a functional dietary component. AgBioforum 6(1&2):14–17

    Google Scholar 

  • Kilicalp N, Benli Y (1994) Possibilities of using lentil flour in rations for layers. Hayvancılık Arastırma Dergisi 4(1):47–49

    Google Scholar 

  • Koumas A, Economides S (1987) Replacement of soybean meal by broad bean or common vetch seed in lamb and kid fattening diets. Tech Bull Agric Res Inst Nicosia 88:1–5

    Google Scholar 

  • Kraska RC, McQuate RS, Soni MG (2010) Oat hull fiber – oat 2 trim food usage conditions for general recognition of safety. Trim Holdings, Inc., Mundelein. http://www.accessdata.fda.gov/scripts/fcn/gras_notices/grn000366.pdf. Accessed 5th Mar 2013

  • Larbi A, El-Moneim AM, Nakkoul H, Jammal B, Hassan S (2011) Intra-species variations in yield and quality determinants in Vicia species: 3. Common vetch (Vicia sativa ssp. sativa L.). Anim Feed Sci Technol 164:241–251. https://doi.org/10.1016/j.anifeedsci.2011.01.004

    Article  Google Scholar 

  • Laudadio V, Nahashon SN, Tufarelli V (2012) Growth performance and carcass characteristics of guinea fowl broilers fed micronized-dehulled pea (Pisum sativum L.) as a substitute for soybean meal. Polut Sci 91(11):2988–2996. https://doi.org/10.3382/ps.2012-02473

    Article  CAS  Google Scholar 

  • Lee MRF, Parkinsona S, Fleminga HR, Theobalda VJ, Leemansa DK, Burgessb T (2016) The potential of blue lupins as a protein source, in the diets of laying hens. Vet Anim Sci 1–2:29–35. https://doi.org/10.1016/j.vas.2016.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Leeson S, Summers JD (2005) Commercial poultry nutrition 3. Nottingham University Press, Nottingham, p 398

    Google Scholar 

  • Liener IE, Kakade ML (1980) Protease inhibitors. In: Liener IE (ed) Toxic constituents of plant foodstuffs. Academic, New York, pp 7–71

    Google Scholar 

  • Makkar HPS, Tran G, Heuze V, Giger-Reverdin S, Lessire M, Lebas F, Ankers P (2016) Seaweeds as livestock feed: a review. Anim Feed Sci Technol 212:1–17. https://doi.org/10.1016/j.anifeedsci.2015.09.018

    Article  CAS  Google Scholar 

  • Mao ZX, Fu H, Nan ZB, Wan CG (2015) Fatty acid, amino acid, and mineral composition of four common vetch seeds on Qinghai-Tibetan plateau. Food Chem 171:13–18. https://doi.org/10.1016/j.foodchem.2014.08.090

    Article  CAS  PubMed  Google Scholar 

  • Marcone MF, Kakuda Y, Yada RY (1998) Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants. Isolation/purification and characterization. Food Chem 62:27–47. https://doi.org/10.1016/S0308-8146(97)00158-1

    Article  CAS  Google Scholar 

  • Marquez MC, Fernandez V, Alonso R (1998) Effect of dry heat on the in vitro digestibility and trypsin inhibitor activity of chickpea flour. Int J Food Sci Technol 33:527–532. https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1046%2Fj.1365-2621.1998.00218.x

    Article  CAS  Google Scholar 

  • Matic R, Nagel S, Kirby G, Young I, Smith K (2007) Vetch breeding and vetch use in Australia. 11th international symposium on forage crops, Novi Sad, Serbia

    Google Scholar 

  • Medic J, Atkinson C, Hurburgh CR (2014) Current knowledge in soybean composition. J Am Oil Chem Soc 91:363–384. https://doi.org/10.1007/s11746-013-2407-9

    Article  CAS  Google Scholar 

  • Medugu CIB, Saleh JU, Igwebuike RL, Ndirmbita (2012) Strategies to improve the utilization of tannin-rich feed materials by Poultry. Int J Poult Sci 11:417–423. https://doi.org/10.3923/ijps.2012.417.423

    Article  CAS  Google Scholar 

  • Megıas C, Cortes-Giraldo I, Giron-Calle J, Vioque J, Alaiz M (2014) Determination of b-cyano-L-alanine, c-glutamyl-b-cyano-L-alanine, and common free amino acids in Vicia sativa (Fabaceae) seeds by reversed-phase high-performance liquid chromatography. J Anal Methods Chem:1–5. https://doi.org/10.1155/2014/409089

  • Mieczkowska A, Jansman AJM, Kwakkel RP, Smulikowska S (2005) Effect of dehulling and α-galactosidase suplement on the ileal digestiblity of yellow lupin based diets in broiler chickens and adult roosters. J Anim Feed Sci 14(2):297–304. https://doi.org/10.22358/jafs/67016/2005

    Article  Google Scholar 

  • Mikic A, Peric V, Dordevic V, Srebric M, Mihailovic V (2009) Anti-nutritional factors in some grain legumes. Biotechnol Anim Hus 25:1181–1188

    Google Scholar 

  • Monsoor MA, Yusuf HKM (2002) In vitro protein digestibility of lathyrus pea (Lathyrus sativus), lentil (Lens culinaris) and chickpea (Cicer arietinum). Int J Food Sci Technol 37:97–99. https://doi.org/10.1046/j.1365-2621.2002.00539.x

    Article  CAS  Google Scholar 

  • Morkunas M (2002) Locally procurable fodder for poultry. Vilnius (Lithuania): Lithuanian Institute of Animal Science, 157 p, Lithuanian

    Google Scholar 

  • Mu K, Kitts DD (2018) Use of soy lecithin to improve nutritional quality of poultry meats and its effect on stability and sensory attributes. J Nutr Food Sci 8:714. https://doi.org/10.4172/2155-9600.1000714

    Article  Google Scholar 

  • Mubarak AE (2005) Nutritional composition and anti-nutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem 89:489–495. https://doi.org/10.1016/j.foodchem.2004.01.007

    Article  CAS  Google Scholar 

  • Nalle CL, Ravindran V, Ravindran G (2010) Nutritional value of faba beans (Vicia faba L.) for broilers: apparent metabolisable energy, ileal amino acid digestibility and production performance. Anim Feed Sci Technol 156:104–111. https://doi.org/10.1016/j.anifeedsci.2010.01.010

    Article  CAS  Google Scholar 

  • Nalle CL, Ravindran V, Ravindran G (2011) Nutritional value of white lupins (Lupinus albus) for broilers: apparent metabolisable energy, apparent ileal amino acid digestibility and production performance. Animal 6:579–585. https://doi.org/10.1017/S1751731111001686

    Article  CAS  Google Scholar 

  • Nedumaran S, Abinaya P, Jyosthnaa P, Shraavya B, Rao P, Bantilan C (2015) Grain legumes production, consumption and trade trends in developing countries. Working Paper Series No 60. ICRISAT Research Program, Markets, Institutions and Policies. Patancheru 502 324, Telangana, India: International Crops Research Institute for the Semi-Arid Tropics, 64 pp

    Google Scholar 

  • Nigam SN, Blummel M (2010) Cultivar dependant variation in food-feed-traits in groundnut (Arachis hypogaea L.). Anim Nutr Feed Technol 10:39–48

    Google Scholar 

  • Nikolopoulou D, Grigorakis K, Stasini M, Alexis MN, Iliadis K (2007) Differences in chemical composition of field pea (Pisum sativum) cultivars: effects of cultivation area and year. Food Chem 103:847–852. https://doi.org/10.1016/j.foodchem.2006.09.035

    Article  CAS  Google Scholar 

  • Oburuoga AC, Anyika JU (2012) Nutrient and anti-nutrient composition of mung bean (Vilgna radiate), acha (Digitaria exilis) and crayfish (Astacus fluviatilis) flours. Pak J Nutr 9:841–844. https://doi.org/10.3923/pjn.2012.841.844

    Article  Google Scholar 

  • Ogblu NN, Ogbu CC, Okorie AU (2015) Haematological indices of broiler chickens fed raw and processed pigeon pea (Cajanus Cajan) seed meal. J Anim Prod Adv 5:711–717

    Article  Google Scholar 

  • Oliverll MD, Jonker A (1997) Effect of sweet, bitter and soaked micronized bitter lupins on broiler performance. Br Poult Sci 38:203–208. https://doi.org/10.1080/00071669708417970

    Article  Google Scholar 

  • Padmashree A, Semwal AD, Khan MA, Govindaraj T, Sharma GK (2016) Effect of infrared processing on functional, nutritional, anti-nutritional and rheological properties of mung bean (Phaseolus aereus) seeds. Int J Adv Res 4:606–613

    CAS  Google Scholar 

  • Park HG, Yang CY (1978) The mung bean breeding programme at the Asian vegetable research and development centre. In: Proceedings of the 1st international mung bean symposium Asian vegetable research and development centre, Shanhua, Taiwan, ROC, pp 214–216

    Google Scholar 

  • Parviz F (2006) Performance and carcass traits of lentil seed fed broilers. Indian Vet J 83:187–190

    Google Scholar 

  • Pastor Cavada E, Juan R, Pastor JE, Alaiz M, Vioque J (2009) Fatty acid distribution in the seed flour of wild Vicia species from Southern Spain. J Am Oil Chem Soc 86:977–983. https://doi.org/10.1007/s11746-009-1426-z

    Article  CAS  Google Scholar 

  • Paul T, Rubel NHM, Sayed MA, Akhtaruzzaman M (2011) Proximate compositions, mineral contents and determination of protease activity from green gram (Vigna radiate, L. Wilczek). Bangladesh Res Pub J 5:207–213

    Google Scholar 

  • Perez-Maldonado RA, Mannion PF, Farrell DJ (1999) Optimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets. I. Chemical composition and layer experiments. Br Poult Sci 40:667–673. https://doi.org/10.1080/00071669987061

    Article  CAS  PubMed  Google Scholar 

  • Piper CV, Tracy SM (1910) The Florida velvetbean and relatedplants. Bull 179. US Dept Agric Bureau Plant Ind, pp 1–26

    Google Scholar 

  • Pitala W, Kulo AE, Sessi KM, Gbeassor M (2016) Effects of incorporation of roasted soybeans on the performance of laying and the financial profitability of laying hens. Int J Poult Sci 15:373–378. https://doi.org/10.3923/ijps.2016.373.378

    Article  CAS  Google Scholar 

  • Proskina L, Cerina S (2017) Faba beans and peas in poultry feed: economic assessment. J Sci Food Agric 97:4391–4398. https://doi.org/10.1002/jsfa.8415

    Article  CAS  PubMed  Google Scholar 

  • Przywitowski M, Mikulski D, Zdunczyk Z, Rogiewicz A, Jankowski J (2016) The effect of dietary high-tannin and low-tannin faba bean (Vicia faba L.) on the growth performance, carcass traits and breast meat characteristics of finisher turkeys. Anim Feed Sci Technol 221:124–136. https://doi.org/10.1016/j.anifeedsci.2016.08.027

    Article  CAS  Google Scholar 

  • Pugalenthi M, Vadivel V, Siddhuraju P (2005) Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis – a review. Plant Foods Hum Nutr 60:201–218. https://doi.org/10.1007/s11130-005-8620-4

    Article  CAS  PubMed  Google Scholar 

  • Pulse Canada (2011) Pulse proteins. http://www.pulsecanada.com/uploads/72/47/7247a8ce5222733d6ef7da7ace146a01/Pulse-Protein.pdf

  • Rada V, Lichovnikova M, Safarik I (2017) The effect of soybean meal replacement with raw full-fat soybean in diets for broiler chickens. J Appl Anim Res 45(1):112–117. https://doi.org/10.1080/09712119.2015.1124337

    Article  CAS  Google Scholar 

  • Ramakrishnaiah N, Pratape VM, Sashikala VB, Narasimha HV (2004) Value addition to by-products from dhal milling industry in India. J Food Sci Technol 41(5):492–496

    Google Scholar 

  • Rihawi S, Iniguez L, Kanus WF, Zakulata M, Wurzinger M, Soelkner J, Larbi A, Bomfim MAD (2010) Fattening performance of lambs of different Awassi genotype, fed under cost reducing diets and contrasting housing conditions. Small Rumin Res 94:38–44. https://doi.org/10.1016/j.smallrumres.2010.06.007

    Article  Google Scholar 

  • Robinson D, Singh DN (2001) Alternative protein sources for laying hens. A report Rural Industries Research and Development Corporation, Kingston, p 85

    Google Scholar 

  • Rungcharoen P, Amornthewaphat N, Ruangpanit Y, Attamangkune S, Rattanatabtimthong S (2010) The utilization of mung bean bran in nursery pig diets. In: Proceedings of the 48th Kasetsart University Annual Conference, Kasetsart, 3–5 March

    Google Scholar 

  • Sadeghi GH, Tabeidian SA, Toghyani M (2011) Effect of processing on the nutritional value of common vetch (Vicia sativa) seed as a feed ingredient for broilers. J Appl Poult Res 20:498–505. https://doi.org/10.3382/japr.2010-00306

    Article  CAS  Google Scholar 

  • Saini HS (1993) Distribution of tannins, vicine and convicine activity in legume seeds. In: Van der Poel AFB, Huisman J, Saini HS (eds) Recent advances of research in antinutritional factors in legume seeds. Wageningen Pers, Wageningen, pp. 95–100

    Google Scholar 

  • Saki AA, Pourhesabi G, Yaghobfar A, Mosavi MA, Tabatabai MM, Abbasinezhad M (2008) Effect of different levels of the raw and processed vetch seed (Vicia sativa) on broiler performance. J Biol Sci 8:663–666. https://doi.org/10.3923/jbs.2008.663.666

    Article  Google Scholar 

  • Sandoval-Castro CA, Herrera P, Capetillo-Lea CM, AyalaBurgos AJ (2003) In vitro gas production and digestibility of Mucuna bean. Trop Subtrop Agroecosyst 1:77–79

    Google Scholar 

  • Savage TF, Nakaue HS, Holmse ZA, Taylor TM (1986) Feeding value of yellow peas (Pisum sativum L., variety Miranda) in market turkeys and sensory evaluation of carcasses. Poult Sci 65:1383–1390. https://doi.org/10.3382/ps.0651383

    Article  Google Scholar 

  • Schuster WH (1992) Olpflanzen in Europa. DLG-Verlag, Frankfurt/Main

    Google Scholar 

  • Sell JL, Tenesaca LG, Bales GL (1979) Influence of dietary fat on energy utilization by laying hens. Poult Sci 58:900–905. https://doi.org/10.3382/ps.0580900

    Article  CAS  Google Scholar 

  • Seymour M, Siddique KHM, Brandon N, Martin L, Jackson E (2002) Response of vetch (Vicia spp.) to plant density in South-Western Australia. Aust J Exp Agric 42:1043–1051. https://doi.org/10.1071/EA01198

    Article  Google Scholar 

  • Sharma C, Singhania D (1992) Performance of cowpea (Vigna unguiculata (L.) Walp.) genotypes for fodder trails. Ann Arid Zone 31:65–66

    Google Scholar 

  • Shi SR, Lu J, Tong HB, Zou JM, Wang KH (2012) Effects of graded replacement of soybean meal by sunflower seed meal in laying hen diets on hen performance, egg quality, egg fatty acid composition, and cholesterol content. J Appl Poult Res 21(2):367–374. https://doi.org/10.3382/japr.2011-00437

    Article  CAS  Google Scholar 

  • Siddhuraju P, Becker K, Makkar HP (2000) Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilized tropical legume, Mucuna puriens var. utilis. J Agric Food Chem 48:6048–6060. https://doi.org/10.1021/jf0006630

    Article  CAS  PubMed  Google Scholar 

  • Silanino V, Bansul HC, Bozzini A (1981) Improvement nutritional quality of food crops, Plant production protection paper, 34. Food and Agricultural Organization, Rome

    Google Scholar 

  • Singh U (1988) Antinutritional factors of chickpea and pigeonpea and their removal by processing. Plant Foods Hum Nutr 38:251–261. https://doi.org/10.1007/BF01092864

    Article  CAS  PubMed  Google Scholar 

  • Singh IF, Eggum BO (1984) Factors affecting the protein quality of pigeon pea (Cajanus cajan). Qual plant food. Hum Nutr 34:273–283

    CAS  Google Scholar 

  • Singh IF, Jain KC, Janbunathan R, Faris DG (1984) Nutritional quality of vegetable pigeon peas [Cajanus cajan (L.) Mill sp.]: mineral and trace elements. J Food Sci 49(2):645–646. https://doi.org/10.1111/j.1365-2621.1984.tb12489.x

    Article  CAS  Google Scholar 

  • Singh VS, Palod J, Vatsya S, Rajeev RK, Shukla SK (2013) Effect of sprouted mung bean (Vigna radiata) supplementation on performance of broilers during mixed Eimeria species infection. Vet Res Int 1(2):41–45

    Google Scholar 

  • Solomon B (2004) Assessment of livestock production system and feed resource base in Sinana Dinsho District of Bale Highlands, Southeast Oromia. MSc thesis, Alemaya University, Alemaya, pp 135

    Google Scholar 

  • Soystats (2012). http://www.soystats.com/2011/. Accessed 6 May

  • Steenfeldt S, Gonzalez E, Bach Knudsen KE (2003) Effects of inclusion with blue lupins (Lupinus angustifolius) in broiler diets and enzyme supplementation on production performance, digestibility and dietary AME content. Anim Feed Sci Technol 110:185–200. https://doi.org/10.1016/S0377-8401(03)00218-9

    Article  CAS  Google Scholar 

  • Sugui FP, Sugui CC, Pastor EC (2007) Performance of broilers fed with different levels of pigeon pea (Cajanus Cajan L.) seed meal. MMSU Sci Technol J 1(1)

    Google Scholar 

  • Swathi M, Lokya V, Swaroop V, Mallikarjuna N, Kannan M, Dutta-Gupta A, Padmasree K (2014) Structural and functional characterisation of proteinase inhibitors from seeds of Cajanus cajan. Plant Physiol Biochem 83:77–87. https://doi.org/10.1016/j.plaphy.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  • Tarawali SA, Singh BB, Peters M, Blade SF (1997) Cowpea haulms as fodder. In: Singh BB (ed) Advances in cowpea research. IITA, Ibadan

    Google Scholar 

  • Tate ME (1996) Vetches: feed or food. Chem Aust 63:549–550

    Google Scholar 

  • Teguia A, Chakam VP, Tchoumboue J (2007) Effets de la cuisson ou de l’extrusion du niebe (Vigna unguiculata) nsur les performances de production des poulets de chair en finition. Bull Anim Prod Afr 55:118–126. https://doi.org/10.4314/bahpa.v55i2.32800

    Article  Google Scholar 

  • Tekale SS, Jaiwal BV, Padul MV (2016) Identification of metabolites from an active fraction of Cajanus cajan seeds by high resolution mass spectrometry. Food Chem 211:763–769. https://doi.org/10.1016/j.foodchem.2016.05.128

    Article  CAS  PubMed  Google Scholar 

  • Teresa Macarulla M, Medina C, Aranzazu De Diego M, Chavarri M, Angeles Zulet M, Alfredo Martinez J, Noel-Suberville C, Higueret P, Mara Portillo P (2001) Effects of the whole seed and a protein isolate of faba bean (Vicia faba) on the cholesterol metabolism of hypercholesterolaemic rats. Br J Nutr 85:607–614. https://doi.org/10.1079/BJN2000330

    Article  Google Scholar 

  • Tolera A (2007) Feed resources for producing export quality meat and livestock in Ethiopia: examples from selected Woredas in Oromia and SNNP Regional States. Ethiopia Sanitary and Phytosanitary Standards and Livestock and Meat Marketing (SPS-LMM) Program, Addis Ababa, Ethiopia, 77 p

    Google Scholar 

  • Trejo LW, Santos R, Hau E, Olivera L, Anderson S, Belmar R (2004) Utilisation of mucuna beans (Mucuna pruriens (L.) DC ssp. deeringianum (Bart) Hanelt) to feed growing broilers. J Agric Rural Dev Trop Subtrop 105(2):155–164

    Google Scholar 

  • Tuleun CD, Dashe NA (2010) Effect of dietary levels of toasted mucuna seed meal (TMSM) on the performance and egg quality parameters of laying Japanese quails (Coturnix coturnix japonica). Int J Poult Sci 9(12):1092–1096. https://doi.org/10.3923/ijps.2010.1092.1096

    Article  CAS  Google Scholar 

  • Tuleun CD, Igba F (2008) Growth and carcass characteristics of broiler chickens fed water soaked and cooked velvet bean (Mucuna utilis) meal. Afr J Biotechnol 7(15):2676–2681

    Google Scholar 

  • Tuleun CD, Igyem SY, Adenkola AY (2009) The feeding value of toasted mucuna seed meal diets for growing Japanese quail (Coturnix coturnix japonica). Int J Poult Sci 8(11):1042–1046. https://doi.org/10.3923/ijps.2009.1042.1046

    Article  CAS  Google Scholar 

  • Tusar MA, Ali MS, Das SC, Alam MS, Matin MA, Sufian MKNB, Paul RC (2015) Growth performance of broiler after inclusion of Pigeon pea (Cajanus cajan) seed as an unconventional feed ingredient in diets. Wayamba J Anim Sci 7:1223–1231

    Google Scholar 

  • Ukachukwu SN, Obioha FC (2007) Effect of processing methods on the nutritional value of Mucuna cochinchinensis to broiler chicks. Aust J Exp Agric 47(2):125–131. https://doi.org/10.1071/ea03111

    Article  Google Scholar 

  • USDA (2000) Subject: egg-grading manual. Agriculture handbook number 75. http://www.ams.usda.gov/poultry/pdfs/EggGrading%20manual.pdf. Accessed Apr 2004

  • Uzun A, Gucer S, Acikgoz E (2011) Common vetch (Vicia sativa L.) germplasm: correlations of crude protein and mineral content to seed traits. Plant Foods Hum Nutr 66:254–260. https://doi.org/10.1007/s11130-011-0239-z

    Article  CAS  PubMed  Google Scholar 

  • Vadivel V, Janardhanan K (2000) Nutritional and anti nutritional composition of velvet bean: an under-utilized food legume in South India. Int J Food Sci Nutr 51(4):279–287. https://doi.org/10.1080/09637480050077167

    Article  CAS  PubMed  Google Scholar 

  • Vadivel V, Pugalenthi M, Doss M, Parimelazhagan T (2011) Evaluation of velvet bean meal as an alternative protein ingredient for poultry feed. Animal 5(1):67–73. https://doi.org/10.1017/S175173111000159X

    Article  CAS  PubMed  Google Scholar 

  • Van der Poel AFB, Gravendeel S, Boer H (1991) Effect of different processing methods on tannin content and in vitro protein digestibility of faba bean (Vicia faba L.). Anim Feed Sci Technol 33:49–58. https://doi.org/10.1016/0377-8401(91)90045-T

    Article  Google Scholar 

  • Van der Poel AFB (1989) Effects of processing on antinutritional factors (ANF) and nutritional value of legume seeds for non-ruminant feeding. In: Huisman J, Van der Poel AFB, Liener IE (eds) Recent advances of research in antinutritional factors in legume seeds. Wageningen Academic Publishers, Pudoc Wageningen, p 213–229

    Google Scholar 

  • Vinh NT, Tuan BQ, Hang NM (2013) The use of Mung bean (Phaseolus aureus) hulls in diets of laying hens. Livest Res Rural Dev 25:14. http://www.lrrd.org/lrrd25/1/vinh25014.htm

    Google Scholar 

  • Viveros AA, Brenes R, Elices I, Arija CR (2001) Nutritional value of raw and autoclave kabuli and desi chickpeas (Cicer arietinum L.) for growing chickens. Br Poult Sci 42:242–251. https://doi.org/10.1080/00071660120048500

    Article  CAS  PubMed  Google Scholar 

  • Von Sengbusch R (1942) Sweet lupins and oil lupins. The history of the origin of some new crop plants. Landwirtsch Jahrb 91:719–880

    Google Scholar 

  • Waldroup PW (1982) Whole soybeans for poultry feeds. Worlds Poult Sci J 38:28–35. https://doi.org/10.1017/WPS19820003

    Article  Google Scholar 

  • Williams TO, Fernandez-Rivera S, Kelly TG (1997) The influence of socio-economic factors on the availability and utilization of crop residues as animal feeds. In: Renard C (ed) Crop residues in sustainable mixed crop/livestock farming systems. International Crops Research Institute for the Semi-Arid Tropics, Wallingford, pp 25–40

    Google Scholar 

  • Wiryawan KG, Dingle JG (1995) Screening tests of the protein quality of grain legumes for poultry production. Br J Nutr 74(5):671–679. https://doi.org/10.1079/bjn19950170

  • Wiryawan KG, Dingle JG (1999) Recent research on improving the quality of grain legumes for chicken growth. Anim Feed Sci Technol 76:185–193

    Article  Google Scholar 

  • Wiryawan KG, Miller HM, Holmes JHG (1997) Mung beans (Phaseolus aereus) for finishing pigs. Anim Feed Sci Technol 66:297–303. https://doi.org/10.1016/S0377-8401(96)01061-9

    Article  Google Scholar 

  • Wisaniyasa NW, Suter IK, Marsono Y, Putra IK (2015) Germination effect on functional properties and antitrypsin activities of pigeon pea (Cajanus cajan (L.) Millsp.) sprout flour. Food Sci Qual Manag 43:79–83

    Google Scholar 

  • Wondifraw Z (2018) Replacement of soybean grain with cowpea grain (Vigna unguiculata) as protein supplement in Sasso x Rir crossbred chicks diet. Poult Fish Wildl Sci 6:1–6. https://doi.org/10.4172/2375-446X.1000188

    Article  Google Scholar 

  • Woodworth JC, Tokach MD, Goodband RD, Nelssen JL, O’Quinn PR, Knabe DA, Said NW (2001) Apparent ileal digestibility of amino acids and digestible and metabolisable energy content of dry extruded-expelled soybean meal and its effect on growth performance of pigs. J Anim Sci 79:1280–1287. https://doi.org/10.2527/2001.7951280x

    Article  CAS  PubMed  Google Scholar 

  • Woyengo TA, Nyachoti CM (2012) Ideal digestibility of amino acids for zero-tannin faba bean (Vicia faba L.) fed to broiler chicks. Poult Sci 91:439–443. https://doi.org/10.3382/ps.2011-01678

    Article  CAS  PubMed  Google Scholar 

  • Yaklich RW (2001) Beta-Conglycinin and glycinin in high-protein soybean seeds. J Agric Food Chem 49:729–735. https://doi.org/10.1021/jf001110s

    Article  CAS  PubMed  Google Scholar 

  • Yalcın S, Sehu A, Kaya I (1998) The effect of common vetch seed (Vicia sativa L.) added to the quail rations on growth, carcass yield and some blood parameters. Turk J Vet Anim Sci 22:37–42

    Google Scholar 

Download references

Acknowledgements

The authors are thankful for the consent and endorse the encouragement of Department of Biotechnology, G. I. T., GITAM (Deemed to be University), Visakhapatnam in successful completion of this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nalluri, N., Karri, V.R. (2021). Grain Legumes and Their By-Products: As a Nutrient Rich Feed Supplement in the Sustainable Intensification of Commercial Poultry Industry. In: Guleria, P., Kumar, V., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 51. Sustainable Agriculture Reviews, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-68828-8_3

Download citation

Publish with us

Policies and ethics