Skip to main content

A Novel Joint Points and Silhouette-Based Method to Estimate 3D Human Pose and Shape

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12661))

Included in the following conference series:

  • 2379 Accesses

Abstract

This paper presents a novel method for 3D human pose and shape estimation from images with sparse views, using joint points and silhouettes, based on a parametric model. Firstly, the parametric model is fitted to the joint points estimated by deep learning-based human pose estimation. Then, we extract the correspondence between the parametric model of pose fitting and silhouettes in 2D and 3D space. A novel energy function based on the correspondence is built and minimized to fit a parametric model to the silhouettes. Our approach uses comprehensive shape information because the energy function of silhouettes is built from both 2D and 3D space. This also means that our method only needs images from sparse views, which balances data used and the required prior information. Results on synthetic data and real data demonstrate the competitive performance of our approach on pose and shape estimation of the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alldieck, T., Magnor, M., Xu, W.P., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3d people models. In: CVPR, pp. 8387–8397 (2018)

    Google Scholar 

  2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. 24, 408–416 (2005)

    Article  Google Scholar 

  3. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 472–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_29

    Chapter  Google Scholar 

  4. Bogo, F., Black, M.J., Loper, M., Romero, J.: Detailed full-body reconstructions of moving people from monocular RGB-D sequences. In: ICCV, pp. 2300–2308 (2015)

    Google Scholar 

  5. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3d human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  6. Dou, M.S., et al.: Fusion4d: real-time performance capture of challenging scenes. ACM Trans. Graph. 35, 114:1–114:13 (2016)

    Google Scholar 

  7. Geman, S., McClure, D.: Statistical methods for tomographic image reconstruction. Bull. Int. Stat. Inst. 52, 5–21 (1987)

    MathSciNet  Google Scholar 

  8. Guan, P., Weiss, A., Bãlan, A.O., Black, M.J.: Estimating human shape and pose from a single image. In: ICCV, pp. 1381–1388 (2009)

    Google Scholar 

  9. Huang, Y., et al.: Towards accurate marker-less human shape and pose estimation over time. In: 2017 International Conference on 3D Vision (3DV), pp. 421–430 (2017)

    Google Scholar 

  10. Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., Stamminger, M.: VolumeDeform: real-time volumetric non-rigid reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 362–379. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_22

    Chapter  Google Scholar 

  11. Izadi, S., et al.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST), pp. 559–568 (2011)

    Google Scholar 

  12. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR, pp. 7122–7131 (2018)

    Google Scholar 

  13. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In: ICCV, pp. 2252–2261 (2019)

    Google Scholar 

  14. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. Int. J. Comput. Vision, 1–15 (2019)

    Google Scholar 

  15. Li, Z., Heyden, A., Oskarsson, M.: Parametric model-based 3d human shape and pose estimation from multiple views. In: 21st Scandinavian Conference on Image Analysis (SCIA), pp. 336–347 (2019)

    Google Scholar 

  16. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. 34, 248:1–248:16 (2015)

    Google Scholar 

  17. Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_11

    Chapter  Google Scholar 

  18. Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: reconstruction and tracking of non-rigid scenes in real-time. In: CVPR, pp. 343–352 (2015)

    Google Scholar 

  19. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A., Tzionas, D., Black, M.J.: Expressive body capture: 3d hands, face, and body from a single image. In: CVPR, pp. 10975–10985 (2019)

    Google Scholar 

  20. Pavlakos, G., Zhu, L.Y., Zhou, X.W., Daniilidis, K.: Learning to estimate 3D human pose and shape from a single color image. In: CVPR, pp. 459–468 (2018)

    Google Scholar 

  21. Pavlakos, G., Kolotouros, N., Daniilidis, K.: Texturepose: Supervising human mesh estimation with texture consistency. In: ICCV pp. 803–812 (2019)

    Google Scholar 

  22. Sigal, L., Balan, A., Black, M.J.: Combined discriminative and generative articulated pose and non-rigid shape estimation. In: NIPS, pp. 1337–1344 (2008)

    Google Scholar 

  23. Slavcheva, M., Baust, M., Cremers, D., Ilic, S.: Killingfusion: on-rigid 3d reconstruction without correspondences. In: CVPR, pp. 5474–5483 (2017)

    Google Scholar 

  24. Varol, G., Ceylan, D., Russell, B., Yang, J., Yumer, E., Laptev, I., Schmid, C.: BodyNet: volumetric inference of 3D human body shapes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 20–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_2

    Chapter  Google Scholar 

  25. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27, 97:1–97:9 (2008)

    Google Scholar 

  26. Weiss, A., Hirshberg, D., Black, M.J.: Home 3D body scans from noisy image and range data. In: ICCV, pp. 1951–1958 (2011)

    Google Scholar 

  27. Xu, L., Su, Z., Han, L., Yu, T., Liu, Y., FANG, L.: Unstructuredfusion: Realtime 4d geometry and texture reconstruction using commercial rgbd cameras. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2019)

    Google Scholar 

  28. Xu, W.P., et al.: Monoperfcap: human performance capture from monocular video. ACM Trans. Graph. 37, 27:1–27:15 (2016)

    Google Scholar 

  29. Ye, G., Liu, Y., Hasler, N., Ji, X., Dai, Q., Theobalt, C.: Performance capture of interacting characters with handheld kinects. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 828–841. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_59

    Chapter  Google Scholar 

  30. Yu, T., et al.: Bodyfusion: real-time capture of human motion and surface geometry using a single depth camera. In: ICCV, pp. 910–919 (2017)

    Google Scholar 

  31. Yu, T., et al.: Doublefusion: real-time capture of human performances with inner body shapes from a single depth sensor. In: CVPR, pp. 7287–7296 (2018)

    Google Scholar 

Download references

Acknowledgements

We would like to appreciate the support from ELLIIT, eSSENCE and the China Scholarship Council (CSC) for our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongguo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Heyden, A., Oskarsson, M. (2021). A Novel Joint Points and Silhouette-Based Method to Estimate 3D Human Pose and Shape. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics