Skip to main content

Novel Thoracic MRI Approaches for the Assessment of Pulmonary Physiology and Inflammation

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1304))

Abstract

Excessive pulmonary inflammation can lead to damage of lung tissue, airway remodelling and established structural lung disease. Novel therapeutics that specifically target inflammatory pathways are becoming increasingly common in clinical practice, but there is yet to be a similar stepwise change in pulmonary diagnostic tools. A variety of thoracic magnetic resonance imaging (MRI) tools are currently in development, which may soon fulfil this emerging clinical need for highly sensitive assessments of lung structure and function. Given conventional MRI techniques are poorly suited to lung imaging, alternate strategies have been developed, including the use of inhaled contrast agents, intravenous contrast and specialized lung MR sequences. In this chapter, we discuss technical challenges of performing MRI of the lungs and how they may be overcome. Key thoracic MRI modalities are reviewed, namely, hyperpolarized noble gas MRI, oxygen-enhanced MRI (OE-MRI), ultrashort echo time (UTE) MRI and dynamic contrast-enhanced (DCE) MRI. Finally, we consider potential clinical applications of these techniques including phenotyping of lung disease, evaluation of novel pulmonary therapeutic efficacy and longitudinal assessment of specific patient groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

129Xe:

Xenon-129

3He:

Helium-3

ADC:

Apparent diffusion coefficient

ASL:

Arterial spin labelling

BOS:

Bronchiolitis obliterans syndrome

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane receptor

COPD:

Chronic obstructive pulmonary disease

CT:

Computed tomography

CTPA:

CT pulmonary angiography

DCE:

Dynamic contrast enhancement

DLCO:

Diffusion capacity of the lung for carbon dioxide

DPD:

Dynamic proton density

DWI:

Diffusion-weighted imaging

FEV1:

Forced expiratory volume in 1 second

GRE:

Gradient recall echo

ILD:

Interstitial lung disease

IPF:

Idiopathic pulmonary fibrosis

LAM:

Lymphangioleiomyomatosis

LCI:

Lung clearance index

LVR:

Lung volume reduction

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

OE-MRI:

Oxygen-enhanced MRI

OTF:

Oxygen transfer function

PE:

Pulmonary embolism

PET:

Positron emission tomography

PFT:

Pulmonary function test

RBC:

Red blood cell

RER:

Relative enhancement ratio

RF:

Radiofrequency

SS:

Systemic sclerosis

SUVmax:

Maximum standardized uptake value

T:

Tesla

UTE:

Ultrashort echo time

V/Q:

Ventilation-perfusion

VDP:

Ventilation defect percentage

VDV:

Ventilation defect volume

ZTE:

Zero echo time

References

  1. Moldoveanu B, Otmishi P, Jani P, Walker J, Sarmiento X, Guardiola J, et al. Inflammatory mechanisms in the lung. J Inflamm Res. 2009;2:1–11.

    CAS  PubMed  Google Scholar 

  2. Sweeney RM, McAuley DF. Acute respiratory distress syndrome. Lancet. 2016;388(10058):2416–30.

    Article  PubMed  PubMed Central  Google Scholar 

  3. James AL, Wenzel S. Clinical relevance of airway remodelling in airway diseases. Eur Respir J. 2007;30(1):134–55.

    Article  CAS  PubMed  Google Scholar 

  4. Cottin V, Hirani NA, Hotchkin DL, Nambiar AM, Ogura T, Otaola M, et al. Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases. Eur Respir Rev. 2018;27(150):180076.

    Article  PubMed  Google Scholar 

  5. Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros. 2015;14(4):419–30.

    Article  CAS  PubMed  Google Scholar 

  6. Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18(12):e754–e66.

    Article  PubMed  Google Scholar 

  7. Pooley RA. Fundamental physics of MR imaging. Radiographics. 2005;25(4):1087–99.

    Article  PubMed  Google Scholar 

  8. Currie S, Hoggard N, Craven IJ, Hadjivassiliou M, Wilkinson ID. Understanding MRI: basic MR physics for physicians. Postgrad Med J. 2013;89(1050):209–23.

    Article  PubMed  Google Scholar 

  9. Ertürk MA, Wu X, Eryaman Y, Van de Moortele P-F, Auerbach EJ, Lagore RL, et al. Toward imaging the body at 10.5 tesla. Magn Reson Med. 2017;77(1):434–43.

    Article  PubMed  Google Scholar 

  10. Jenkinson M, Chappell M. Introduction to neuroimaging analysis. New York: Oxford University Press; 2018.

    Google Scholar 

  11. Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5(3):246–55.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sands MJ, Levitin A. Basics of magnetic resonance imaging. Semin Vasc Surg. 2004;17(2):66–82.

    Article  PubMed  Google Scholar 

  13. Westbrook C. In: Westbrook C, Roth CK, Talbot JM, editors. MRI in practice. 4th ed. Oxford: Wiley-Blackwell; 2011.

    Google Scholar 

  14. Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol. 1999;9(6):1032–46.

    Article  CAS  PubMed  Google Scholar 

  15. Vassiliou VS, Cameron D, Prasad SK, Gatehouse PD. Magnetic resonance imaging: physics basics for the cardiologist. JRSM Cardiovasc Dis. 2018;7:2048004018772237.

    Google Scholar 

  16. Mansfield P, Maudsley AA. Medical imaging by NMR. Br J Radiol. 1977;50(591):188–94.

    Article  CAS  PubMed  Google Scholar 

  17. Damadian R, Goldsmith M, Minkoff L. NMR in cancer: XVI. FONAR image of the live human body. Physiol Chem Phys. 1977;9(1):97–100, 108.

    CAS  PubMed  Google Scholar 

  18. Iezzi R, Larici AR, Franchi P, Marano R, Magarelli N, Posa A, et al. Tailoring protocols for chest CT applications: when and how? Diagn Interv Radiol (Ankara, Turkey). 2017;23(6):420–7.

    Google Scholar 

  19. Thakur Y, McLaughlin PD, Mayo JR. Strategies for radiation dose optimization. Curr Radiol Rep. 2013;1(1):1–10.

    Article  Google Scholar 

  20. Gustafsson T, Eriksson A, Wingren CJ. Multivariate linear regression modelling of lung weight in 24,056 Swedish medico-legal autopsy cases. J Forensic Legal Med. 2017;46:20–2.

    Article  CAS  Google Scholar 

  21. Torres L, Kammerman J, Hahn AD, Zha W, Nagle SK, Johnson K, et al. Structure-function imaging of lung disease using ultrashort echo time MRI. Acad Radiol. 2019;26(3):431–41.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kauczor HU, Kreitner KF. MRI of the pulmonary parenchyma. Eur Radiol. 1999;9(9):1755–64.

    Article  CAS  PubMed  Google Scholar 

  23. Lipton ML. In: Lipton ML, editor. Totally accessible MRI: a user’s guide to principles, technology, and applications. New York: Springer; 2008.

    Chapter  Google Scholar 

  24. Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging: JMRI. 2016;43(2):295–315.

    Article  PubMed  Google Scholar 

  25. Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, et al. MRI of the lung (1/3): methods. Insights Imaging. 2012;3(4):345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson KM, Fain SB, Schiebler ML, Nagle S. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med. 2013;70(5):1241–50.

    Article  PubMed  Google Scholar 

  27. Oechsner M, Pracht ED, Staeb D, Arnold JFT, Köstler H, Hahn D, et al. Lung imaging under free-breathing conditions. Magn Reson Med. 2009;61(3):723–7.

    Article  PubMed  Google Scholar 

  28. Raptis CA, Ludwig DR, Hammer MM, Luna A, Broncano J, Henry TS, et al. Building blocks for thoracic MRI: challenges, sequences, and protocol design. J Magn Reson Imaging: JMRI. 2019;50:682–701.

    Article  PubMed  Google Scholar 

  29. Albert MS, Cates GD, Driehuys B, Happer W, Saam B, Springer CS, et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature. 1994;370(6486):199–201.

    Article  CAS  PubMed  Google Scholar 

  30. Mugler JP III, Driehuys B, Brookeman JR, Cates GD, Berr SS, Bryant RG, et al. MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med. 1997;37(6):809–15.

    Article  PubMed  Google Scholar 

  31. Middleton H, Black RD, Saam B, Cates GD, Cofer GP, Guenther R, et al. MR imaging with hyperpolarized 3He gas. Magn Reson Med. 1995;33(2):271–5.

    Article  CAS  PubMed  Google Scholar 

  32. Mugler JP III, Altes TA. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging. 2013;37(2):313–31.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roos JE, McAdams HP, Kaushik SS, Driehuys B. Hyperpolarized gas MR imaging: technique and applications. Magn Reson Imaging Clin N Am. 2015;23(2):217–29.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ebner L, Kammerman J, Driehuys B, Schiebler ML, Cadman RV, Fain SB. The role of hyperpolarized (129)xenon in MR imaging of pulmonary function. Eur J Radiol. 2017;86:343–52.

    Article  PubMed  Google Scholar 

  35. Altes T, Gersbach J, Mata J, Mugler III J, Brookeman J, de Lange E, editors. Evaluation of the safety of hyperpolarized helium-3 gas as an inhaled contrast agent for MRI. In: Proceedings of the Fifteenth Meeting of the International Society for Magnetic Resonance in Medicine Berkeley, CA: International Society for Magnetic Resonance in Medicine; 2007.

    Google Scholar 

  36. Lutey BA, Lefrak SS, Woods JC, Tanoli T, Quirk JD, Bashir A, et al. Hyperpolarized 3He MR imaging: physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology. 2008;248(2):655–61.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wild JM, Paley MNJ, Viallon M, Schreiber WG, van Beek EJR, Griffiths PD. k-Space filtering in 2D gradient-echo breath-hold hyperpolarized 3He MRI: spatial resolution and signal-to-noise ratio considerations. Magn Reson Med. 2002;47(4):687–95.

    Article  PubMed  Google Scholar 

  38. Altes TA, de Lange EE. Applications of hyperpolarized helium-3 gas magnetic resonance imaging in pediatric lung disease. Top Magn Reson Imaging: TMRI. 2003;14(3):231–6.

    Article  PubMed  Google Scholar 

  39. Fain S, Schiebler ML, McCormack DG, Parraga G. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications. J Magn Reson Imaging: JMRI. 2010;32(6):1398–408.

    Article  PubMed  Google Scholar 

  40. Kauczor HU, Ebert M, Kreitner KF, Nilgens H, Surkau R, Heil W, et al. Imaging of the lungs using 3He MRI: preliminary clinical experience in 18 patients with and without lung disease. J Magn Reson Imaging: JMRI. 1997;7(3):538–43.

    Article  CAS  PubMed  Google Scholar 

  41. Mathew L, Evans A, Ouriadov A, Etemad-Rezai R, Fogel R, Santyr G, et al. Hyperpolarized 3He magnetic resonance imaging of chronic obstructive pulmonary disease: reproducibility at 3.0 tesla. Acad Radiol. 2008;15(10):1298–311.

    Article  PubMed  Google Scholar 

  42. Samee S, Altes T, Powers P, de Lange EE, Knight-Scott J, Rakes G, et al. Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge. J Allergy Clin Immunol. 2003;111(6):1205–11.

    Article  CAS  PubMed  Google Scholar 

  43. Altes TA, Powers PL, Knight-Scott J, Rakes G, Platts-Mills TA, de Lange EE, et al. Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings. J Magn Reson Imaging: JMRI. 2001;13(3):378–84.

    Article  CAS  PubMed  Google Scholar 

  44. de Lange EE, Altes TA, Patrie JT, Battiston JJ, Juersivich AP, Mugler JP 3rd, et al. Changes in regional airflow obstruction over time in the lungs of patients with asthma: evaluation with 3He MR imaging. Radiology. 2009;250(2):567–75.

    Article  PubMed  Google Scholar 

  45. Lee EY, Sun Y, Zurakowski D, Hatabu H, Khatwa U, Albert MS. Hyperpolarized 3He MR imaging of the lung: normal range of ventilation defects and PFT correlation in young adults. J Thorac Imaging. 2009;24(2):110–4.

    Article  PubMed  Google Scholar 

  46. Mentore K, Froh DK, de Lange EE, Brookeman JR, Paget-Brown AO, Altes TA. Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol. 2005;12(11):1423–9.

    Article  PubMed  Google Scholar 

  47. Woodhouse N, Wild JM, van Beek EJ, Hoggard N, Barker N, Taylor CJ. Assessment of hyperpolarized 3He lung MRI for regional evaluation of interventional therapy: a pilot study in pediatric cystic fibrosis. J Magn Reson Imaging: JMRI. 2009;30(5):981–8.

    Article  PubMed  Google Scholar 

  48. Altes TA, Johnson M, Fidler M, Botfield M, Tustison NJ, Leiva-Salinas C, et al. Use of hyperpolarized helium-3 MRI to assess response to ivacaftor treatment in patients with cystic fibrosis. J Cyst Fibros. 2017;16(2):267–74.

    Article  PubMed  Google Scholar 

  49. Chilla GS, Tan CH, Xu C, Poh CL. Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imaging Med Surg. 2015;5(3):407–22.

    PubMed  PubMed Central  Google Scholar 

  50. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: technique and applications. World J Radiol. 2016;8(9):785–98.

    Article  PubMed  PubMed Central  Google Scholar 

  51. van Beek EJ, Wild JM, Kauczor HU, Schreiber W, Mugler JP III, de Lange EE. Functional MRI of the lung using hyperpolarized 3-helium gas. J Magn Reson Imaging. 2004;20(4):540–54.

    Article  PubMed  Google Scholar 

  52. Saam BT, Yablonskiy DA, Kodibagkar VD, Leawoods JC, Gierada DS, Cooper JD, et al. MR imaging of diffusion of 3He gas in healthy and diseased lungs. Magn Reson Med. 2000;44(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  53. Salerno M, Altes TA, Brookeman JR, de Lange EE, Mugler JP 3rd. Rapid hyperpolarized 3He diffusion MRI of healthy and emphysematous human lungs using an optimized interleaved-spiral pulse sequence. J Magn Reson Imaging: JMRI. 2003;17(5):581–8.

    Article  PubMed  Google Scholar 

  54. Wang C, Miller GW, Altes TA, de Lange EE, Cates GD Jr, Mugler JP 3rd. Time dependence of 3He diffusion in the human lung: measurement in the long-time regime using stimulated echoes. Magn Reson Med. 2006;56(2):296–309.

    Article  PubMed  Google Scholar 

  55. Diaz S, Casselbrant I, Piitulainen E, Magnusson P, Peterson B, Wollmer P, et al. Validity of apparent diffusion coefficient hyperpolarized 3He-MRI using MSCT and pulmonary function tests as references. Eur J Radiol. 2009;71(2):257–63.

    Article  PubMed  Google Scholar 

  56. Kirby M, Mathew L, Wheatley A, Santyr GE, McCormack DG, Parraga G. Chronic obstructive pulmonary disease: longitudinal hyperpolarized (3)He MR imaging. Radiology. 2010;256(1):280–9.

    Article  PubMed  Google Scholar 

  57. Chan H-F, Weatherley N, Johns CS, Stewart N, Collier G, Bianchi SM, et al. Airway microstructure in idiopathic pulmonary fibrosis: assessment at hyperpolarized 3 He diffusion-weighted MRI. Radiology. 2019;291:181714.

    Google Scholar 

  58. Chan H-F, Stewart NJ, Parra-Robles J, Collier GJ, Wild JM. Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing. Magn Reson Med. 2017;77(5):1916–25.

    Article  CAS  PubMed  Google Scholar 

  59. McCormack DG, Halko S, McKay S, Kirby M, Svenningsen S, Wheatley A, et al. Hyperpolarized 129Xe MRI feasibility, subject safety and tolerability: at the doorstep of clinical translation? In: A65 lung imaging: physiology and technology. American Thoracic Society; 2012. p. A2031-A.

    Google Scholar 

  60. Driehuys B, Martinez-Jimenez S, Cleveland ZI, Metz GM, Beaver DM, Nouls JC, et al. Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology. 2012;262(1):279–89.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Altes T, Mugler J, Dregely I, Ketel S, Ruset I, de Lange E, et al., editors. Hyperpolarized xenon-129 ventilation MRI: preliminary results in normal subjects and patients with lung disease. In: Proceedings 18th scientific meeting; 2010.

    Google Scholar 

  62. Kirby M, Svenningsen S, Owrangi A, Wheatley A, Farag A, Ouriadov A, et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology. 2012;265(2):600–10.

    Article  PubMed  Google Scholar 

  63. Svenningsen S, Kirby M, Starr D, Leary D, Wheatley A, Maksym GN, et al. Hyperpolarized (3) He and (129) Xe MRI: differences in asthma before bronchodilation. J Magn Reson Imaging: JMRI. 2013;38(6):1521–30.

    Article  PubMed  Google Scholar 

  64. Costella S, Kirby M, Maksym GN, McCormack DG, Paterson NA, Parraga G. Regional pulmonary response to a methacholine challenge using hyperpolarized (3)He magnetic resonance imaging. Respirology (Carlton, VIC). 2012;17(8):1237–46.

    Google Scholar 

  65. Doganay O, Matin T, Chen M, Kim M, McIntyre A, McGowan DR, et al. Time-series hyperpolarized xenon-129 MRI of lobar lung ventilation of COPD in comparison to V/Q-SPECT/CT and CT. Eur Radiol. 2018;29:4058–67.

    Article  PubMed  PubMed Central  Google Scholar 

  66. He M, Driehuys B, Que LG, Huang YT. Using hyperpolarized (129)Xe MRI to quantify the pulmonary ventilation distribution. Acad Radiol. 2016;23(12):1521–31.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Thomen RP, Walkup LL, Roach DJ, Cleveland ZI, Clancy JP, Woods JC. Hyperpolarized (129)Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros. 2017;16(2):275–82.

    Article  CAS  PubMed  Google Scholar 

  68. Couch MJ, Thomen R, Kanhere N, Hu R, Ratjen F, Woods J, et al. A two-center analysis of hyperpolarized (129)Xe lung MRI in stable pediatric cystic fibrosis: potential as a biomarker for multi-site trials. J Cyst Fibros. 2019;18:728–33.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Walkup LL, Roach DJ, Hall CS, Gupta N, Thomen RP, Cleveland ZI, et al. Cyst ventilation heterogeneity and alveolar airspace dilation as early disease markers in lymphangioleiomyomatosis. Ann Am Thorac Soc. 2019;16(8):1008–16.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kirby M, Svenningsen S, Kanhere N, Owrangi A, Wheatley A, Coxson HO, et al. Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema. J Appl Physiol (Bethesda, MD: 1985). 2013;114(6):707–15.

    Google Scholar 

  71. Matin TN, Rahman N, Nickol AH, Chen M, Xu X, Stewart NJ, et al. Chronic obstructive pulmonary disease: lobar analysis with hyperpolarized (129)Xe MR imaging. Radiology. 2017;282(3):857–68.

    Article  PubMed  Google Scholar 

  72. Thomen RP, Quirk JD, Roach D, Egan-Rojas T, Ruppert K, Yusen RD, et al. Direct comparison of (129) Xe diffusion measurements with quantitative histology in human lungs. Magn Reson Med. 2017;77(1):265–72.

    Article  PubMed  Google Scholar 

  73. Walkup LL, Thomen RP, Akinyi TG, Watters E, Ruppert K, Clancy JP, et al. Feasibility, tolerability and safety of pediatric hyperpolarized (129)Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol. 2016;46(12):1651–62.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kaushik SS, Freeman MS, Yoon SW, Liljeroth MG, Stiles JV, Roos JE, et al. Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis. J Appl Physiol (Bethesda, MD: 1985). 2014;117(6):577–85.

    Google Scholar 

  75. Cleveland ZI, Cofer GP, Metz G, Beaver D, Nouls J, Kaushik SS, et al. Hyperpolarized Xe MR imaging of alveolar gas uptake in humans. PloS One. 2010;5(8):e12192-e.

    Google Scholar 

  76. Qing K, Shim Y, Tustison N, Altes T, Ruppert K, Mata J, et al. A19 getting polarized: MR imaging in obstructive lung disease: hyperpolarized xenon-129 MRI: a new tool to evaluate COPD. Am J Respir Crit Care Med. 2016;193:1.

    Google Scholar 

  77. Qing K, Ruppert K, Jiang Y, Mata JF, Miller GW, Shim YM, et al. Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI. J Magn Reson Imaging: JMRI. 2014;39(2):346–59.

    Article  PubMed  Google Scholar 

  78. Wang JM, Robertson SH, Wang Z, He M, Virgincar RS, Schrank GM, et al. Using hyperpolarized 129Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis. Thorax. 2018;73(1):21–8.

    Article  PubMed  Google Scholar 

  79. Wang Z, He M, Bier E, Rankine L, Schrank G, Rajagopal S, et al. Hyperpolarized (129) Xe gas transfer MRI: the transition from 1.5T to 3T. Magn Reson Med. 2018;80(6):2374–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ohno Y, Hatabu H. Basics concepts and clinical applications of oxygen-enhanced MR imaging. Eur J Radiol. 2007;64(3):320–8.

    Article  PubMed  Google Scholar 

  81. Loffler R, Muller CJ, Peller M, Penzkofer H, Deimling M, Schwaiblmair M, et al. Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced MR lung imaging. Magn Reson Med. 2000;43(6):860–6.

    Article  CAS  PubMed  Google Scholar 

  82. Mai VM, Liu B, Li W, Polzin J, Kurucay S, Chen Q, et al. Influence of oxygen flow rate on signal and T(1) changes in oxygen-enhanced ventilation imaging. J Magn Reson Imaging: JMRI. 2002;16(1):37–41.

    Article  PubMed  Google Scholar 

  83. Oechsner M, Pracht ED, Staeb D, Arnold JF, Kostler H, Hahn D, et al. Lung imaging under free-breathing conditions. Magn Reson Med. 2009;61(3):723–7.

    Article  PubMed  Google Scholar 

  84. Stadler A, Stiebellehner L, Jakob PM, Arnold JF, Eisenhuber E, von Katzler I, et al. Quantitative and o(2) enhanced MRI of the pathologic lung: findings in emphysema, fibrosis, and cystic fibrosis. Int J Biomed Imaging. 2007;2007:23624.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jobst BJ, Triphan SM, Sedlaczek O, Anjorin A, Kauczor HU, Biederer J, et al. Functional lung MRI in chronic obstructive pulmonary disease: comparison of T1 mapping, oxygen-enhanced T1 mapping and dynamic contrast enhanced perfusion. PLoS One. 2015;10(3):e0121520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Renne J, Lauermann P, Hinrichs JB, Schonfeld C, Sorrentino S, Gutberlet M, et al. Chronic lung allograft dysfunction: oxygen-enhanced T1-mapping MR imaging of the lung. Radiology. 2015;276(1):266–73.

    Article  PubMed  Google Scholar 

  87. Jakob PM, Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D. Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med. 2004;51(5):1009–16.

    Article  PubMed  Google Scholar 

  88. Kaireit TF, Sorrentino SA, Renne J, Schoenfeld C, Voskrebenzev A, Gutberlet M, et al. Functional lung MRI for regional monitoring of patients with cystic fibrosis. PLoS One. 2017;12(12):e0187483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ohno Y, Hatabu H, Takenaka D, Adachi S, Van Cauteren M, Sugimura K. Oxygen-enhanced MR ventilation imaging of the lung: preliminary clinical experience in 25 subjects. AJR Am J Roentgenol. 2001;177(1):185–94.

    Article  CAS  PubMed  Google Scholar 

  90. Ohno Y, Iwasawa T, Seo JB, Koyama H, Takahashi H, Oh Y-M, et al. Oxygen-enhanced magnetic resonance imaging versus computed tomography. Am J Respir Crit Care Med. 2008;177(10):1095–102.

    Article  PubMed  Google Scholar 

  91. Ohno Y, Koyama H, Matsumoto K, Onishi Y, Nogami M, Takenaka D, et al. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: pulmonary functional loss assessment and clinical stage classification of asthmatics. Eur J Radiol. 2011;77(1):85–91.

    Article  PubMed  Google Scholar 

  92. Ohno Y, Nishio M, Koyama H, Yoshikawa T, Matsumoto S, Seki S, et al. Oxygen-enhanced MRI for patients with connective tissue diseases: comparison with thin-section CT of capability for pulmonary functional and disease severity assessment. Eur J Radiol. 2014;83(2):391–7.

    Article  PubMed  Google Scholar 

  93. Zha W, Nagle SK, Cadman RV, Schiebler ML, Fain SB. Three-dimensional isotropic functional imaging of cystic fibrosis using oxygen-enhanced MRI: comparison with hyperpolarized (3)He MRI. Radiology. 2019;290(1):229–37.

    Article  PubMed  Google Scholar 

  94. Renne J, Hinrichs J, Schonfeld C, Gutberlet M, Winkler C, Faulenbach C, et al. Noninvasive quantification of airway inflammation following segmental allergen challenge with functional MR imaging: a proof of concept study. Radiology. 2015;274(1):267–75.

    Article  PubMed  Google Scholar 

  95. Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV. Noninvasive assessment of regional ventilation in the human lung using oxygen–enhanced magnetic resonance imaging. Nat Med. 1996;2(11):1236–9.

    Article  CAS  PubMed  Google Scholar 

  96. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol. 2008;29(7):1228–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mai VM, Bankier AA, Prasad PV, Li W, Storey P, Edelman RR, et al. MR ventilation-perfusion imaging of human lung using oxygen-enhanced and arterial spin labeling techniques. J Magn Reson Imaging: JMRI. 2001;14(5):574–9.

    Article  CAS  PubMed  Google Scholar 

  98. Bergin CJ, Pauly JM, Macovski A. Lung parenchyma: projection reconstruction MR imaging. Radiology. 1991;179(3):777–81.

    Article  CAS  PubMed  Google Scholar 

  99. Weiger M, Brunner DO, Dietrich BE, Muller CF, Pruessmann KP. ZTE imaging in humans. Magn Reson Med. 2013;70(2):328–32.

    Article  PubMed  Google Scholar 

  100. Miller GW, Mugler JP 3rd, Sá RC, Altes TA, Prisk GK, Hopkins SR. Advances in functional and structural imaging of the human lung using proton MRI. NMR Biomed. 2014;27(12):1542–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tibiletti M, Paul J, Bianchi A, Wundrak S, Rottbauer W, Stiller D, et al. Multistage three-dimensional UTE lung imaging by image-based self-gating. Magn Reson Med. 2016;75(3):1324–32.

    Article  CAS  PubMed  Google Scholar 

  102. Higano NS, Hahn AD, Tkach JA, Cao X, Walkup LL, Thomen RP, et al. Retrospective respiratory self-gating and removal of bulk motion in pulmonary UTE MRI of neonates and adults. Magn Reson Med. 2017;77(3):1284–95.

    Article  PubMed  Google Scholar 

  103. Triphan SM, Breuer FA, Gensler D, Kauczor HU, Jakob PM. Oxygen enhanced lung MRI by simultaneous measurement of T1 and T2 * during free breathing using ultrashort TE. J Magn Reson Imaging: JMRI. 2015;41(6):1708–14.

    Article  PubMed  Google Scholar 

  104. Higano N, Walkup L, Hahn A, Thomen R, Merhar S, Kingma P, et al., editors. Quantification of neonatal lung parenchymal density via ultra-short echo-time (UTE) magnetic resonance imaging (MRI). American Journal of Respiratory and Critical Care Medicine. New York: American Thoracic Society; 2016.

    Google Scholar 

  105. Higano NS, Spielberg DR, Fleck RJ, Schapiro AH, Walkup LL, Hahn AD, et al. Neonatal pulmonary magnetic resonance imaging of bronchopulmonary dysplasia predicts short-term clinical outcomes. Am J Respir Crit Care Med. 2018;198(10):1302–11.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Roach DJ, Cremillieux Y, Fleck RJ, Brody AS, Serai SD, Szczesniak RD, et al. Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease. Ann Am Thorac Soc. 2016;13(11):1923–31.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dournes G, Menut F, Macey J, Fayon M, Chateil JF, Salel M, et al. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol. 2016;26(11):3811–20.

    Article  PubMed  Google Scholar 

  108. Ma W, Sheikh K, Svenningsen S, Pike D, Guo F, Etemad-Rezai R, et al. Ultra-short echo-time pulmonary MRI: evaluation and reproducibility in COPD subjects with and without bronchiectasis. J Magn Reson Imaging: JMRI. 2015;41(5):1465–74.

    Article  PubMed  Google Scholar 

  109. Roach DJ, Cremillieux Y, Serai SD, Thomen RP, Wang H, Zou Y, et al. Morphological and quantitative evaluation of emphysema in chronic obstructive pulmonary disease patients: a comparative study of MRI with CT. J Magn Reson Imaging: JMRI. 2016;44(6):1656–63.

    Article  PubMed  Google Scholar 

  110. Chassagnon G, Martin C, Marini R, Vakalopolou M, Regent A, Mouthon L, et al. Use of elastic registration in pulmonary MRI for the assessment of pulmonary fibrosis in patients with systemic sclerosis. Radiology. 2019;291(2):487–92.

    Article  PubMed  Google Scholar 

  111. Burris NS, Johnson KM, Larson PE, Hope MD, Nagle SK, Behr SC, et al. Detection of small pulmonary nodules with ultrashort Echo time sequences in oncology patients by using a PET/MR system. Radiology. 2016;278(1):239–46.

    Article  PubMed  Google Scholar 

  112. Cha MJ, Park HJ, Paek MY, Stemmer A, Lee ES, Park SB, et al. Free-breathing ultrashort echo time lung magnetic resonance imaging using stack-of-spirals acquisition: a feasibility study in oncology patients. Magn Reson Imaging. 2018;51:137–43.

    Article  PubMed  Google Scholar 

  113. Wielputz MO, Lee HY, Koyama H, Yoshikawa T, Seki S, Kishida Y, et al. Morphologic characterization of pulmonary nodules with ultrashort TE MRI at 3T. AJR Am J Roentgenol. 2018;210(6):1216–25.

    Article  PubMed  Google Scholar 

  114. Sheikh K, Guo F, Capaldi DP, Ouriadov A, Eddy RL, Svenningsen S, et al. Ultrashort echo time MRI biomarkers of asthma. J Magn Reson Imaging: JMRI. 2017;45(4):1204–15.

    Article  PubMed  Google Scholar 

  115. Willmering MM, Niedbalski PJ, Wang H, Walkup LL, Robison RK, Pipe JG, et al. Improved pulmonary (129) Xe ventilation imaging via 3D-spiral UTE MRI. Magn Reson Med. 2020;84(1):312–20.

    Article  PubMed  Google Scholar 

  116. Kruger SJ, Fain SB, Johnson KM, Cadman RV, Nagle SK. Oxygen-enhanced 3D radial ultrashort echo time magnetic resonance imaging in the healthy human lung. NMR Biomed. 2014;27(12):1535–41.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ley S, Ley-Zaporozhan J, Pitton MB, Schneider J, Wirth GM, Mayer E, et al. Diagnostic performance of state-of-the-art imaging techniques for morphological assessment of vascular abnormalities in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol. 2012;22(3):607–16.

    Article  PubMed  Google Scholar 

  118. Stein PD, Chenevert TL, Fowler SE, Goodman LR, Gottschalk A, Hales CA, et al. Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann Intern Med. 2010;152(7):434–43.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schiebler ML, Nagle SK, François CJ, Repplinger MD, Hamedani AG, Vigen KK, et al. Effectiveness of MR angiography for the primary diagnosis of acute pulmonary embolism: clinical outcomes at 3 months and 1 year. J Magn Reson Imaging. 2013;38(4):914–25.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yi CA, Lee KS, Han J, Chung MP, Chung MJ, Shin KM. 3-T MRI for differentiating inflammation- and fibrosis-predominant lesions of usual and nonspecific interstitial pneumonia: comparison study with pathologic correlation. AJR Am J Roentgenol. 2008;190(4):878–85.

    Article  PubMed  Google Scholar 

  121. Maria Ta B, Andreas W, Christopher MR, Michael K, Claus Peter H, Mark K, et al. Contrast agent accumulation patterns in chronic interstitial lung disease using 5D MRI. Br J Radiol. 2020;93:20190121.

    Google Scholar 

  122. Amaxopoulou C, Gnannt R, Higashigaito K, Jung A, Kellenberger CJ. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis. Pediatr Radiol. 2018;48(2):165–75.

    Article  PubMed  Google Scholar 

  123. Kellenberger CJ, Amaxopoulou C, Moehrlen U, Bode PK, Jung A, Geiger J. Structural and perfusion magnetic resonance imaging of congenital lung malformations. Pediatr Radiol. 2020;50:1083–94.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ohno Y, Fujisawa Y, Yui M, Takenaka D, Koyama H, Sugihara N, et al. Solitary pulmonary nodule: comparison of quantitative capability for differentiation and management among dynamic CE-perfusion MRI at 3 T system, dynamic CE-perfusion ADCT and FDG-PET/CT. Eur J Radiol. 2019;115:22–30.

    Article  PubMed  Google Scholar 

  125. Horn M, Oechsner M, Gardarsdottir M, Köstler H, Müller MF. Dynamic contrast-enhanced MR imaging for differentiation of rounded atelectasis from neoplasm. J Magn Reson Imaging. 2010;31(6):1364–70.

    Article  PubMed  Google Scholar 

  126. Wu W, Zhou S, Hippe DS, Liu H, Wang Y, Mayr NA, et al. Whole-lesion DCE-MRI intensity histogram analysis for diagnosis in patients with suspected lung cancer. Acad Radiol. 2020;28:e27–34.

    Article  PubMed  Google Scholar 

  127. Huang Y-S, Chen JL-Y, Hsu F-M, Huang J-Y, Ko W-C, Chen Y-C, et al. Response assessment of stereotactic body radiation therapy using dynamic contrast-enhanced integrated MR-PET in non-small cell lung cancer patients. J Magn Reson Imaging. 2018;47(1):191–9.

    Article  PubMed  Google Scholar 

  128. Xu J, Mei L, Liu L, Wang K, Zhou Z, Zheng J. Early assessment of response to chemotherapy in lung cancer using dynamic contrast-enhanced MRI: a proof-of-concept study. Clin Radiol. 2018;73(7):625–31.

    Article  CAS  PubMed  Google Scholar 

  129. Bourjeily G, Paidas M, Khalil H, Rosene-Montella K, Rodger M. Pulmonary embolism in pregnancy. Lancet. 2010;375(9713):500–12.

    Article  PubMed  Google Scholar 

  130. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159.

    Google Scholar 

  131. Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science (New York, NY). 1951;113(2942):580–2.

    Google Scholar 

  132. Abdo WF, Heunks LMA. Oxygen-induced hypercapnia in COPD: myths and facts. Crit Care. 2012;16(5):323.

    Google Scholar 

  133. Power SP, Moloney F, Twomey M, James K, O’Connor OJ, Maher MM. Computed tomography and patient risk: facts, perceptions and uncertainties. World J Radiol. 2016;8(12):902–15.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;391(10122):783–800.

    Article  PubMed  Google Scholar 

  135. de Lange EE, Altes TA, Patrie JT, Gaare JD, Knake JJ, Mugler JP III, et al. Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest. 2006;130(4):1055–62.

    Article  PubMed  Google Scholar 

  136. Svenningsen S, Kirby M, Starr D, Coxson HO, Paterson NAM, McCormack DG, et al. What are ventilation defects in asthma? Thorax. 2014;69(1):63–71.

    Article  PubMed  Google Scholar 

  137. Mirza S, Benzo R. Chronic obstructive pulmonary disease phenotypes: implications for care. Mayo Clin Proc. 2017;92(7):1104–12.

    Article  PubMed  Google Scholar 

  138. Davey C, Zoumot Z, Jordan S, McNulty WH, Carr DH, Hind MD, et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BeLieVeR-HIFi study): a randomised controlled trial. Lancet. 2015;386(9998):1066–73.

    Article  PubMed  Google Scholar 

  139. Eberhardt R, Herth FJF, Radhakrishnan S, Gompelmann D. Comparing clinical outcomes in upper versus lower lobe endobronchial valve treatment in severe emphysema. Respiration. 2015;90(4):314–20.

    Article  PubMed  Google Scholar 

  140. Adams CJ, Capaldi DPI, Di Cesare R, McCormack DG, Parraga G. On the potential role of MRI biomarkers of COPD to guide bronchoscopic lung volume reduction. Acad Radiol. 2018;25(2):159–68.

    Article  PubMed  Google Scholar 

  141. Kirby M, Mathew L, Heydarian M, Etemad-Rezai R, McCormack DG, Parraga G. Chronic obstructive pulmonary disease: quantification of bronchodilator effects by using hyperpolarized (3)He MR imaging. Radiology. 2011;261(1):283–92.

    Article  PubMed  Google Scholar 

  142. Kirby M, Pike D, Coxson HO, McCormack DG, Parraga G. Hyperpolarized 3He ventilation defects used to predict pulmonary exacerbations in mild to moderate chronic obstructive pulmonary disease. Radiology. 2014;273(3):887–96.

    Article  PubMed  Google Scholar 

  143. Horsley AR, Gustafsson PM, Macleod KA, Saunders C, Greening AP, Porteous DJ, et al. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Thorax. 2008;63(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  144. Smith L, Marshall H, Aldag I, Horn F, Collier G, Hughes D, et al. Longitudinal assessment of children with mild cystic fibrosis using hyperpolarized gas lung magnetic resonance imaging and lung clearance index. Am J Respir Crit Care Med. 2018;197(3):397–400.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Martini K, Gygax CM, Benden C, Morgan AR, Parker GJM, Frauenfelder T. Volumetric dynamic oxygen-enhanced MRI (OE-MRI): comparison with CT Brody score and lung function in cystic fibrosis patients. Eur Radiol. 2018;28(10):4037–47.

    Article  CAS  PubMed  Google Scholar 

  146. Weatherley ND, Stewart NJ, Chan H-F, Austin M, Smith LJ, Collier G, et al. Hyperpolarised xenon magnetic resonance spectroscopy for the longitudinal assessment of changes in gas diffusion in IPF. Thorax. 2019;74(5):500–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan P. Brooke or Ian P. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brooke, J.P., Hall, I.P. (2021). Novel Thoracic MRI Approaches for the Assessment of Pulmonary Physiology and Inflammation. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume II. Advances in Experimental Medicine and Biology, vol 1304. Springer, Cham. https://doi.org/10.1007/978-3-030-68748-9_8

Download citation

Publish with us

Policies and ethics