Skip to main content

Chains

  • Chapter
  • First Online:
Molecular Mixed Crystals

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 456 Accesses

Abstract

Starting from a simple aliphatic hydrocarbon chain, we have studied the effect on structural properties caused by the incorporation of an increasing number of hydrogen bonds. In reality, this means that we have studied the structural characteristics—including polymorphism—and the phase behavior of binary mixtures in the following groups of substances: the n-alkanes; the 1-alkanols; the α, ω-alkanediols; the alkanoic acids; and the alkanedioic acids. The results that have been obtained clearly show that two “parameters” have a crucial influence on the structural and thermodynamic properties. These are (i) the parity (odd versus even) of the carbon chain; and (ii) the aim at realizing as many hydrogen bonds as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maroncelli M, Strauss HL, Snyder RG (1985) The distribution of conformational disorder in the high-temperature phases of the crystalline normal-alkanes. J Chem Phys 82(6):2811–2824

    Article  CAS  Google Scholar 

  2. De Gennes PG (1974) The physics of liquid crystals. Clarendon, Oxford

    Google Scholar 

  3. Chapman D, Wallach DFH (1968, Vol. I) and (1973, Vol. II) Biological membranes. Academic Press, London

    Google Scholar 

  4. Poirier B, Robles L, Mondieig D, Haget Y, Girardet C, Grignon R (1994) Les Equilibres entre phases JEEP XX. In: Haget Y, Marbeuf A (eds) 155–158

    Google Scholar 

  5. Espeau P, Robles L, Mondieig D, Haget Y, Cuevas-Diarte MA, Tamarit JLl (1996) Thermal cycling of molecular alloys and eutectics containing alkanes for energy storage. Mat Res Bull 31(10):1219

    Article  CAS  Google Scholar 

  6. Cuevas-Diarte MA, Haget Y, Mondieig D (1996) Nuevos materiales para almacenamiento térmico: aleaciones moleculares. Rev El Instalador 319:87

    Google Scholar 

  7. Mondieig D, Marbeuf A, Robles L, Espeau P, Haget Y, Calvet-Pallas T, Cuevas-Diarte MA (1997) Thermoadjustable molecular alloys for energy storageand thermal protection: fundamental aspects and applications. High Temp-High Pressures 29:385

    Article  CAS  Google Scholar 

  8. Espeau P, Mondieig D, Haget Y, Cuevas-Diarte MA (1997) ‘Active’ package for thermal protection of food products. Packag Technol Sci 10:253

    Article  CAS  Google Scholar 

  9. Arjona F, Calvet T, Cuevas-Diarte MA, Metivaud V, Mondieig D (2000) Application of the n-alkane molecular alloys to thermally protected containers for catering. Bol Soc Esp Ceram Vidrio 39(4):548

    Article  CAS  Google Scholar 

  10. Keller A (1961) Some new habit features in crystals of long chain compounds. Part I Paraffins Phil Mag 6(63):329

    CAS  Google Scholar 

  11. Bunn CW (1939) The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the > CH2 group. Trans Faraday Soc 35(1):482

    Article  CAS  Google Scholar 

  12. Vand V (1951) Method for determining the signs of the structure factors of long-chain compounds. Acta Crystallogr 4(2):104

    Article  CAS  Google Scholar 

  13. Schoon T (1938) Polymorphic form crystal carbon compound with long chains. (Structure tests through electron diffraction). Zeitschrift fur physikalische chemie-abteilung b-chemie der elementarprozesse aufbau der materie 39(5/6):385–410

    Google Scholar 

  14. Kitaigorodskii AI (1955) Organic chemical crystallography. Consultants Bureau, New York 65–112 and 177–215

    Google Scholar 

  15. Hastie GP, Roberts K (1994) An investigation into the inter- and intra-molecular packing in the solid state for crystals of the normal alkanes and homologous mixtures using FTIR spectroscopy. J Mat Sci 29:1915–1919

    Article  CAS  Google Scholar 

  16. Müller A (1930) The crystal structure of the normal paraffins at temperatures ranging from that of liquid air to the melting points. Proc Roy Soc London A 127(805):417

    Article  Google Scholar 

  17. Kim Y, Strauss HL, Snyder RG (1989) Conformational disorder in crystalline n-alkanes prior to melting. J Am Chem Soc 93(21):7520

    CAS  Google Scholar 

  18. Mazee WM (1948) Some properties of hydrocarbons having more than twenty carbon atoms. Rec Trav Chim Pays-Bas 67(4):197–213

    CAS  Google Scholar 

  19. Kitaigorodskii AI, Mnyukh YV, Nechitailo NA (1958) Investigation of solid solutions of some n-paraffins. Soviet Phys-Crystallogr 3:303

    Google Scholar 

  20. Doucet J, Denicolo I, Craievich AF (1981) X-ray study of the rotator phase of the odd-numbered paraffins C17H36, C19H40, and C21H44. J Chem Phys 75(3):1523

    Article  CAS  Google Scholar 

  21. Doucet J, Denicolo I, Craievich AF, Collet A (1981) Evidence of a phase-transition in the rotator phase of the odd-numbered paraffins C23H48 and C25H52. J Chem Phys 75(10):5125

    Article  CAS  Google Scholar 

  22. Maroncelli M, Qi SP, Strauss HL, Snyder RG (1982) Nonplanar conformers and the phase-behavior of solid normal-alkanes. J Am Chem Soc 104(23):6237

    Article  CAS  Google Scholar 

  23. Ungar G (1983) Structure of rotator phases in normal-alkanes. J Phys Chem 87(4):689–695

    Article  CAS  Google Scholar 

  24. Denicolo I, Doucet J, Craievich AF (1983) X-Ray study of the rotator phase of paraffins (III)—Even-numbered paraffins C18H38, C20H42, C22H46, C24H50, AND C26H54. J Chem Phys 78(3):1465

    Article  CAS  Google Scholar 

  25. Doucet J, Denicolo I, Craievich AF, Germain C (1984) X-ray study of the rotator phase of paraffins. 4. C27H56, C28H58, C29H60, C30H62, C32H66, and C34H70. J Chem Phys 80(4):1647–1651

    Article  CAS  Google Scholar 

  26. Sirota EB, King HE, Singer DM, Shao HH (1993) Rotator phases of the normal alkanes: an x-ray scatteting study. J Chem Phys 98(7):5809–5824

    Article  CAS  Google Scholar 

  27. Sirota EB, Singer DM (1994) Phase transitions among the rotator phases of the normal alkanes. J Chem Phys 101(12):10873–10881

    Article  CAS  Google Scholar 

  28. Robles L (1995) Syncristallisation dans la famille des n-alcanes à chaînes longues (C18H38 à C28H58). Alliages moléculaires et stockage d’énergie. Applications au domaine paramédical. European PhD Thesis. Université Bordeaux I

    Google Scholar 

  29. Rajabalee F (1998) Existence et stabilité se sous-familles structurales de cristaux mixtes dans les alcanes normaux (C8H18 à C28H58). Caractérisations cristallographique et thermodynamique. Incidence des désordres de composition, conformation et rotation. European PhD Thesis. Université Bordeaux I

    Google Scholar 

  30. Métivaud V (1999) Systèmes multi composants d’alcanes normaux dans la gamme C14H30-C25H52: Alliances structurales et stabilité des échantillons mixtes. Applications pour la protection thermique d’installations de télécommunications et de circuits optoélectroniques. European PhD Thesis. Université Bordeaux I

    Google Scholar 

  31. Rajabalee F, Negrier P, Mondieig D, Cuevas-Diarte MA (2002) Ordered phases in n-heptacosane (C27H56). Structure determination of the mdci phase. Chem Mater 14:4081–4087

    Article  CAS  Google Scholar 

  32. Muller A, Londsale L (1948) The low-temperature form of C18H38. Acta Cryst 1:129–131

    Article  CAS  Google Scholar 

  33. Espeau P, Robles L, Mondieig D, Haget Y, Cuevas-Diarte MA (1996) Review on the energetic and crystallographic behaviour of n-alkanes. 1. Series form C8H18 up to C21H44. J Chim Phys 93(7–8):1217

    Article  CAS  Google Scholar 

  34. Robles L, Mondieig D, Haget Y, Cuevas-Diarte MA (1998) Review on the energetic and crystallographic behaviour of n-alkanes. II. Series from C22H46 to C27H56. J de Chim Phys et de Phys-Chim Biol 95(1):92–111

    CAS  Google Scholar 

  35. Poirier B (1996) Du fondamental à l’appliqué. Les alcanes normaux à chaînes longues: séquénces polymorphiques, alliances structurales et stockage d’énergie, application industrielle. PhD Thesis. Université Bordeaux I

    Google Scholar 

  36. Rajabalee F, Métivaud V, Mondieig D, Haget Y, Cuevas-Diarte MA (1999) New insights on the crystalline forms in binary systems of n-alkanes: characterization of the solid ordered phases in the phase diagram tricosane plus pentacosane. J Mater Res 14(6):2644

    Article  CAS  Google Scholar 

  37. Smith AEJ (1953) The crystal structure of the normal paraffin hydrocarbons. J Chem Phys 21:2229

    Article  CAS  Google Scholar 

  38. Nozaki K, Higashitani N, Yamamoto T, Hara T (1995) Solid-solid phase-transitions in n-alkanes C23H48 and C25H52—X-ray power diffraction study on new layer stacking in phase-V. J Chem Phys 103(13):5762–5766

    Article  CAS  Google Scholar 

  39. Snyder RG, Maroncelli M, Qi SP, Strauss HL (1981) Phase-transitions and nonplanar conformers in crystalline normal-alkanes. Science 214(4517):188

    Article  CAS  PubMed  Google Scholar 

  40. Heyding RD, Russel RE, Varty TL, St-Cyr D (1990) The normal paraffins revisited. Powder Diffr 5(2):93

    Article  CAS  Google Scholar 

  41. Gerson AR, Roberts KJ, Sherwood JN (1991) X-ray-powder diffraction studies of alkanes—Unit-cell parameters of the homologous series C18H38 TO C28H58. Acta Cryst B47(2):280

    Article  CAS  Google Scholar 

  42. Gerson AR, Roberts KJ, Sherwood JN (1992) X-ray-powder diffraction studies of normal-alkanes—a reexamination of the unit-cell parameters of C24H50 and C26H54. Acta Cryst B48(5):746

    Article  CAS  Google Scholar 

  43. Ungar G, Masic N (1985) Order in the rotator phase of normal-alkanes. J Phys Chem 89(6):1036

    Google Scholar 

  44. Snyder RG, Schachtschneider JH (1963) Vibrational analysis of the n-paraffins. 1. Assignments of infrared bands in the spectra of C3H8 through n-C19H40 Spectrochim. Acta 19(1):85

    CAS  Google Scholar 

  45. Schachtschneider JH, Snyder RG (1963) Vibrational analysis of the n-paraffins. 2. Normal co-ordinate calculations. Spectrochim. Acta 19(1):117

    CAS  Google Scholar 

  46. Snyder RG (1967) Vibrational study of the chain conformation of the liquid n-paraffins and molten polyethylene. J Chem Phys 47:1316

    Article  CAS  Google Scholar 

  47. Zerbi G, Magni R, Gussoni M, Moritz KH, Bogotto A, Dirlikov S (1981) Molecular mechanics for phase-transition and melting of normal-alkanes. A spectroscopic study of molecular mobility of solid normal-nonadecane. J Chem Phys 75(7):3175

    Article  CAS  Google Scholar 

  48. Gbabode G (2005) Étude du polymorphisme et de la miscibilité à l’état solide dans la série des acides gras saturés. European PhD thesis. Université Bordeaux I

    Google Scholar 

  49. Mondieig D, Rajabalee F, Métivaud V, Oonk HAJ, Cuevas-Diarte MA (2004) N-alkane binary molecular alloys. Chem Mater 16:786–798

    Article  CAS  Google Scholar 

  50. Wurflinger A, Mondieig D, Rajabalee F, Cuevas-Diarte MA (2001) pVT measurements and related studies on the binary system nC(16)H(34)-nC(17)H(36) and on nC(18)H(38) at high pressures. Z Naturforsch 56(12):895

    Google Scholar 

  51. Métivaud V, Rajabalee F, Cuevas-Diarte MA, Calvet T, Mondieig D, Haget Y (1998) The “low temperature” structural behaviour of the binary system octadecane (C18H38) plus nonadecane (C19H40). Experimental equilibrium phase diagram. Anales de Quimica, International edition 94(6):396

    Google Scholar 

  52. Métivaud V, Rajabalee F, Mondieig D, Haget Y, Cuevas-Diarte MA (1999) Solid-solid and solid-liquid equilibria in the heneicosane-docosane binary system. Chem Mater 11(1):117

    Article  Google Scholar 

  53. Rajabalee F, Métivaud V, Mondieig D, Haget Y, Oonk HAJ (1999) Structural and energetic behavior of mixed samples in the hexacosane (n-C26H54)/octacosane (n-C28H58) system; solid-solid and solid-liquid equilibria. Helv Chim Acta 82(11):1916

    Google Scholar 

  54. Rajabalee F, Métivaud V, Oonk HAJ, Mondieig D, Waldner P (2000) Perfect families of mixed crystals: the “ordered” crystalline forms of n-alkanes. Phys Chem Chem Phys 2(6):1345

    Article  CAS  Google Scholar 

  55. Oonk HAJ, Mondieig D, Haget Y, Cuevas-Diarte MA (1998) Perfect families of mixed crystals: the rotator I N-alkane case. J Chem Phys 108(2):715

    Article  CAS  Google Scholar 

  56. Mondieig D, Métivaud V, Oonk HAJ, Cuevas-Diarte MA (2003) Isothermal transformations in alkane alloys. Chem Mater 15(13):2552–2560

    Article  CAS  Google Scholar 

  57. Small DM (1986) Handbook of lipid research. Plenum Press, New York

    Google Scholar 

  58. Ventolà L (2001) Miscibilitat a l’estat sòlid en la familia dels n-alcanols. Aplicació a la protecció tèrmica. European PhD thesis. Universitat de Barcelona

    Google Scholar 

  59. Ramírez M (2002) Modelització estructural de les formes ordenades en la familia dels n-alcanols. European PhD thesis. Universitat de Barcelona

    Google Scholar 

  60. Ventolà L, Ramírez M, Calvet T, Solans X, Cuevas-Diarte MA, Negrier P, Mondieig D, van Miltenburg JC, Oonk HAJ (2002) Polymorphism of n-alkanols: 1-heptadecanol, 1-octadecanol, 1-nonadecanol, and 1-eicosanol. Chem Mater 14:508–517

    Article  CAS  Google Scholar 

  61. Cuevas-Diarte MA, Calvet T, Solans X, Ventolà L, Ramírez M, Mondieig D, Oonk HAJ (2002) Isopolimorfismo en aleaciones moleculares. Materiales y aplicaciones. Bol R Soc Esp Hist Nat (Sec. Geol.) 97(1–4):83–95

    Google Scholar 

  62. Tanaka K, Seto T, Watanabe A, Hayashida T (1959) Phase transformation of n-higher alcohols (II). Bull Inst Chem Res Kyoto Univ 37(4):281

    CAS  Google Scholar 

  63. Abrahamsson S, Larsson G, von Sydow E (1960) The crystal structure of the monoclinic form of normal-hexadecanol. Acta Cryst 13(10):770

    Article  CAS  Google Scholar 

  64. Watanabe A (1961) Synthesis and physical properties of normal higher primary alcohols. 3. Synthesis of normal higher primary alcohols of even carbon numbers from dodecanol to hexatriacontanol. Bull Chem Soc Jpn 34(3):398

    Article  CAS  Google Scholar 

  65. Seto T (1962) Crystal structures of n-higher alcohols. Mem Coll Sci University Kyoto A 30(1):89

    Google Scholar 

  66. Watanabe A (1963) The synthesis and the physical properties of normal higher primary alcohols. 5. Thermal and x-ray studies of the polymorphism of alcohols of odd carbon numbers from undecanol to heptatriacontanol. Bull Chem Soc Jpn 36(3):336

    Article  CAS  Google Scholar 

  67. Precht D (1976) Studies on crystal-structures of fatty alcohols and fatty-acids using electron and x-ray-diffraction. 1. Fette Seifen Anstrichmittel 78(4):145

    Article  CAS  Google Scholar 

  68. Precht D (1976) Crystal-structure of fatty alcohols and fatty-acids. Study using electron-diffraction and x-ray-diffraction. 2. Fette Seifen Anstrichmittel 78(5):189

    Article  CAS  Google Scholar 

  69. Fujimoto K, Yamamoto T, Hara T (1985) Crystal structure and molecular motion in octadecanol (C18H37OH). Rep Progr Polym Phys Jpn 28:163–166

    Google Scholar 

  70. Michaud F, Ventolà L, Calvet T, Cuevas-Diarte MA, Solans X, Font-Bardia M (2000) The gamma-form of n-eicosanol. Acta Cryst C56(2):219

    CAS  Google Scholar 

  71. Ishikawa S, Ando I (1993) Structural studies of n-octadecanol by variable-temperature solid-state high-resolution C-13 NMR-spectroscopy. J Mol Struct 291(2–3):183

    Article  CAS  Google Scholar 

  72. Sirota EB, King HE, Shao HH, Singer DM (1995) Rotator phases in mixtures of n-alkanes. J Phys Chem 99(2):798

    Article  CAS  Google Scholar 

  73. Sirota EB, Wu XZ (1996) The rotator phases of neat and hydrated 1-alcohols. J Chem Phys 105(17):7763

    Article  CAS  Google Scholar 

  74. Van Miltenburg JC, Oonk HAJ, Ventolà L (2001) Heat capacities and derived thermodynamic finctions of 1-octadecanol, 1-nonadecanol, 1-eicosanol, and 1-docosanol between 10 K and 370 K. J Chem Eng Data 46(1):90–97

    Article  CAS  Google Scholar 

  75. Van Miltenburg JC, van den Berg GJK, Ramírez M (2003) Heat capacities and derived thermodynamic functions of 1-dodecanol and 1-tridecanol between 10 K and 370 K and heat capacities of 1-pentadecanol and 1-heptadecanol between 300 K and 380 K and correlations for the heat capacity and the entropy of liquid n-alkanols. J Chem Eng Data 48(1):36–43

    Article  CAS  Google Scholar 

  76. Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 22(1):151

    Article  CAS  Google Scholar 

  77. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2(2):65

    Article  CAS  Google Scholar 

  78. Kitaigorodskii AI (1973) Molecular crystals and molecules. Academic Press, New York and London. pp 1–62

    Google Scholar 

  79. Mayo SL, Olafson BD, Goddard WA III (1990) Dreiding: a generic force field for molecular simulations. J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  80. Rodríguez-Carvajal J (1990) Fullprof: a program for rietveld refinement and pattern matching analysis. Abstracts of the satellite meeting on powder diffraction of the XVth congress of the international union of crystallography. Toulouse. pp 127

    Google Scholar 

  81. Rodríguez-Carvajal J (1996) Reference guide for the computer program fullprof. Laboratoire Léon Brillouin, CEA-CNRS, Saclay, France

    Google Scholar 

  82. Smith JC (1931) Higher aliphatic compounds. Part I. The systems ethyl palmitate-ethyl stearate and hexadecyl alcohol-octadecyl alcohol. J Chem Soc 802

    Google Scholar 

  83. Kolp DG, Lutton ES (1962) The binary system palmityl alcohol-stearyl alcohol. J Chem Eng Data 7(2):207

    Article  CAS  Google Scholar 

  84. Al-Mamun MA (1974) Studies of binary systems of long chain alcohols. J Am Oil Chem Soc 51(5):234

    Article  CAS  Google Scholar 

  85. Beer C, Führer C, Junginger H (1980) Untersuchungen über das mischungsverhalten normaler langkettiger Alkohole. Acta Pharm Technol 26:284

    CAS  Google Scholar 

  86. Ventolà L, Calvet T, Cuevas-Diarte MA, Solans X, Mondieig D, Négrier P, van Miltenburg JC (2003) Solid state equilibrium in the n-alkanols family: the stability of binary mixed samples. Phys Chem Chem Phys 5:947–952

    Article  CAS  Google Scholar 

  87. Calvet T, Labrador M, Tauler E, Cuevas-Diarte MA, Estop E, Haget Y (1991) Molecular alloys in the series of para-disubstituted benzene-derivatives. 6 the para-dichlorobenzene para-chloroiodobenzene system. Thermochim Acta 180:61–67

    Article  CAS  Google Scholar 

  88. Francis F, Piper SH, Malkin T (1930) The n-fatty acids. Proc R Soc London 128:214–252

    CAS  Google Scholar 

  89. von Sydow E (1954a) On the structure of the crystal form A’ of n-pentadecanoic acid. Acta Cryst 7:529–532

    Article  Google Scholar 

  90. von Sydow E (1954b) On the structure of the crystal form B’ of normal-pentadecanoic acid. Acta Cryst 7:823–826

    Article  CAS  Google Scholar 

  91. von Sydow E (1955a) On the structure of the crystal form C’ of the n-endecanoic acid. Acta Cryst 8:810–813

    Article  Google Scholar 

  92. von Sydow E (1955b) On the structure of the crystal form A’ of n-pentadecanoic acid. Acta Cryst 8:845–846

    Article  Google Scholar 

  93. von Sydow E (1955c) On the structure of the crystal form A’ of n-pentadecanoic acid. Correction Acta Cryst 8:846

    Google Scholar 

  94. Goto M, Asada E (1980) The crystal-structure of the A’-form of tridecanoic acid. Bull Chem Soc Jpn 53(8):2111–2113

    Article  CAS  Google Scholar 

  95. Goto M, Asada E (1984) The crystal-structure of the B’-form of heptadecanoic acid. Bull Chem Soc Jpn 57(4):1145–1146

    Article  CAS  Google Scholar 

  96. Bond AD (2004) On the crystal structures and melting point alternation of the n-alkyl carboxylic acids. New J Chem 28(1):104–114

    Article  CAS  Google Scholar 

  97. Gbabode G, Negrier P, Mondieig D, Leger JM, Moreno E, Calvet T, Cuevas-Diarte MA (2006) Crystal structure of the B′ form of nonadecanoic acid. Analytycal Sci 22(11):269–270

    Google Scholar 

  98. Gbabode G, Négrier P, Mondieig D, Moreno E, Calvet T, Cuevas-Diarte MA (2007) Structures of the high-temperature solid-phases of the odd-numbered fatty acids from tridecanoic acid to tricosanoic acid. Chem A-Eur J 13:3150–3159

    Article  CAS  Google Scholar 

  99. Lomer TR (1963) Crystal and molecular structure of lauric acid (form A1). Acta Cryst 16:984

    Article  CAS  Google Scholar 

  100. Malta V, Celotti G, Martelli AF, Zannetti R (1971) Crystal structure of C-form of stearic acid. J Chem Soc B-Phys Org 3:548

    Article  Google Scholar 

  101. Goto M, Asada E (1978a) Crystal-structure of A-super form of lauric acid. Bull Chem Soc Jpn 51(1):70–74

    Article  CAS  Google Scholar 

  102. Goto M, Asada E (1978b) Crystal-structure of B-form of stearic acid. Bull Chem Soc Jpn 51(9):2456–2459

    Article  CAS  Google Scholar 

  103. Kaneko H, Kobayshi M, Kitagawa Y (1990) Double-layered polytypic structure of the B-form of octadecanoic acid, C18H36O2. Acta Cryst C 46:1490

    Article  Google Scholar 

  104. Kaneko H, Sakashita H, Kobayshi M (1994) Double-layered polytypic structure of the B-form of octadecanoic acid, C18H36O2. Acta Cryst C50:245–247

    CAS  Google Scholar 

  105. Kaneko H, Sakashita H, Kobayshi M (1994) Double-layered polytypic structure of the E-form of octadecanoic acid, C18H36O2. Acta Cryst C50:247–250

    CAS  Google Scholar 

  106. Bernstein J, Davis RE, Shimoi L, Chang NL (1995) Patterns in hydrogen bonding. Functionality and graph set analysis in crystals. Angew Chem Int Ed Engl 34(15):1555

    Article  CAS  Google Scholar 

  107. Moreno E, Cordobilla R, Calvet T, Lahoz FJ, Balana AI (2006) The C form of n-hexadecanoic acid. Acta Cryst C62:o129–o131

    CAS  Google Scholar 

  108. Moreno E (2008) On the polymorphism and structural characterization in the family of even saturated carboxylic acid. European PhD thesis. Universitat de Barcelona

    Google Scholar 

  109. Moreno E, Cordobilla R, Calvet T, Cuevas-Diarte MA, Gbabode G, Negrier P, Mondieig D, Oonk HAJ (2007) Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid. New J Chem 31:947–957

    Article  CAS  Google Scholar 

  110. von Sydow E (1956) The normal fatty acids in solid state - A crystal structure investigation. Arkiv Kemi 9(3):231

    Google Scholar 

  111. Clark GL (1955) Applied X-Ray. Mc. Graw-Hill. New York

    Google Scholar 

  112. Stenhagen E, von Sydow E (1952) On the phase transitions in normal chain carboxylic acids with 12 up to and including 29 carbon atoms between 30°C and the melting point. Arkiv for Kemi 6(29):309–15

    Google Scholar 

  113. Sato K, Kobayashi M (1991) Crystals: growth, properties and applications. In: Freyhardt MC, Müllervol C, vol 13. Springer-Verlag, Berlin

    Google Scholar 

  114. Schaake RCF, van Miltenburg JC, de Kruif CGJ (1982) Thermodynamic properties of the normal alkanoic acids II. Molar heat capacities of seven even-numbered normal alkanoic acids. Chem Thermodyn 14:771–78

    Google Scholar 

  115. Adriaansen N, Dekker H, Coops J (1964) Some physical constants of normal saturated fatty acids and their methyl esters. Recl Trav Chim Pays-Bas 83(6):557–72

    Google Scholar 

  116. Moreno-Calvo E, Gbabode G, Cordobilla R, Calvet T, Cuevas-Diarte MA, Negrier P, Mondieig D (2009) Competing intermolecular interactions in the high-temperature solid phases of even saturated carboxylic acids (C10H19O2H to C20H39O2H). Chem Eur J 15:13141–13149

    Article  CAS  PubMed  Google Scholar 

  117. Boultif A, Louer D (1991) Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J Appl Cryst 24:987–993

    Article  CAS  Google Scholar 

  118. Moreno-Calvo E, Calvet T, Cuevas-Diarte MA, Aquilano D (2010) Relationship between the crystal structure and morphology of carboxylic acid polymorphs. Predicted and experimental morphologies. Cryst Growth Des 10(10):4263–4271

    Article  CAS  Google Scholar 

  119. Gbabode G, Negrier P, Mondieig D, Moreno E, Calvet T, Cuevas-Diarte MA (2008) Polymorphism and solid-state miscibility in the pentadecanoic acid—heptadecanoic acid binary system. Chem Phys Lipid 154:68–77

    Article  CAS  Google Scholar 

  120. Feldman D, Shapiro MM, Banu D (1986) Organic phase change materials for thermal energy storage. Solar Energ Mater 13:1–10

    Article  CAS  Google Scholar 

  121. Burger A, Ramberger R (1979) Polymorphism of pharmaceuticals and other molecular crystals. 1. Theory of thermodynamic rules. Mikrochim Acta 2(3–4):259

    Article  CAS  Google Scholar 

  122. Sato K, Suzuki K, Okada M, Garti N (1985) Solvent effects on kinetics of solution-mediated transition of stearic-acid polymorphs. J Cryst Growth 72:699–704

    Article  CAS  Google Scholar 

  123. Gbabode G, Negrier P, Mondieig D, Moreno E, Calvet T, Cuevas-Diarte MA (2009) Fatty acids polymorphism and solid-state miscibility. Pentadecanoic acid—hexadecanoic acid binary system. J Alloy Compd 469:539–551

    Article  CAS  Google Scholar 

  124. Fuks CJ (1983) Properties of mixtures of fatty acids proposed as latent heat thermal storage for space heating. PhD thesis. University of Montréal

    Google Scholar 

  125. Feldman D, Shapiro MM, Banu D, Fucks CJ (1989) Fatty acids and their mixtures as phase-change materials for thermal energy storage. Solar Energ Mater 18:201–216

    Article  CAS  Google Scholar 

  126. Baeyer A (1877) Ueber Regelmassigkeiten im schmelzpunkt homologar verbindungen. Ber Chem Ges 10:1286

    Article  Google Scholar 

  127. Boese R, Weiss HC, Bläser D (1999) The melting point alternation in the short-chain n-alkanes: single-crystal x-ray analyses of propane at 30k and n-butane to n-nonane at 90K. Angew Chem Int Ed 38(7):988–992

    Article  CAS  Google Scholar 

  128. Cuevas-Diarte MA (1979) Diversos modos de asociación en las soluciones sólidas entre diácidos pares normales: estudio cristalográfico y energético. PhD thesis. Universitat de Barcelona

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Moreno-Calvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondieig, D., Moreno-Calvo, E., Cuevas-Diarte, M.À. (2021). Chains. In: Cuevas-Diarte, M.À., Oonk, H.A.J. (eds) Molecular Mixed Crystals. Physical Chemistry in Action. Springer, Cham. https://doi.org/10.1007/978-3-030-68727-4_6

Download citation

Publish with us

Policies and ethics