Skip to main content

Computational Model of a Pacinian Corpuscle for Hybrid-Stimuli: Spike-Rate and Threshold Characteristics

  • Chapter
  • First Online:
Computational Intelligence in Healthcare

Part of the book series: Health Information Science ((HIS))

Abstract

Purpose: Tactile displays convey various aspects of touch through mechanical or electrical stimuli. Recent research focuses on combining these two types of stimulation (hybrid stimuli) to achieve naturalness, comfort, and reduction in the threshold, only by experiment. However, there are no computational models to study the Pacinian corpuscle’s behavior under hybrid-stimuli.

Method: We developed a novel hybrid-stimuli Pacinian corpuscle model and characterized its spike-rate and threshold responses. Our model comprises biomechanical and electrical components, both of which are excited simultaneously by hybrid stimuli. We chose stimuli shape as either trapezoidal or sinusoidal, with a frequency from 5 Hz to 1600 Hz, both electrical and mechanical. We characterized the model by first considering the electrical current as an actual stimulus and mechanical vibration as a sub-threshold (magnitude less than the threshold required to produce one impulse-per-cycle response), and then the vice versa.

Results: The spike-rate characteristics exhibit a well-known phase-locking phenomenon. However, the plateaus shift toward the left as the sub-threshold stimulus amplitude increases. Furthermore, the threshold versus frequency curve shifts down. Finally, we observed a monotonic decrease in the threshold of the stimulus as the amplitude of the sub-threshold stimulus increases.

Conclusion: The shifts shown in both spike-rate and threshold characteristics indicate a significant reduction in the actual stimulus threshold. The hybrid-stimuli Pacinian corpuscle model developed and characterized in this study can be useful in improving the design of tactile displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez-Buylla R, De Arellano JR. 1952. Local responses in pacinian corpuscles. American Journal of Physiology-Legacy Content. 172(1):237–244.

    Google Scholar 

  2. Bell J, Bolanowski S, Holmes MH. 1994. The structure and function of pacinian corpuscles: a review. Progress in neurobiology. 42(1):79–128.

    Google Scholar 

  3. Bell J, Holmes M. 1992. Model of the dynamics of receptor potential in a mechanoreceptor. Mathematical biosciences. 110(2):139–174.

    Google Scholar 

  4. Bell J, Holmes MH. 1994. A note on modeling mechano-chemical transduction with an application to a skin receptor. Journal of mathematical biology. 32(3):275–285.

    Google Scholar 

  5. Bensmaıa S. 2002. A transduction model of the meissner corpuscle. Mathematical biosciences. 176(2):203–217.

    Google Scholar 

  6. Biswas A, Manivannan M, Srinivasan MA. 2013. A biomechanical model of pacinian corpuscle & skin. In: In 2013 Biomedical Sciences and Engineering Conference (BSEC). IEEE. p. 1–4.

    Google Scholar 

  7. Biswas A, Manivannan M, Srinivasan MA. 2015. Multiscale layered biomechanical model of the pacinian corpuscle. IEEE Transactions on Haptics. 8(1):31–42.

    Google Scholar 

  8. Biswas A, Manivannan M, Srinivasan MA. 2015. Vibrotactile sensitivity threshold: Nonlinear stochastic mechanotransduction model of the pacinian corpuscle. IEEE transactions on haptics. 8(1):102–113.

    Google Scholar 

  9. Bolanowski SJ, Gescheider GA, Verrillo RT. 1994. Hairy skin: psychophysical channels and their physiological substrates. Somatosensory & motor research. 11(3):279–290.

    Google Scholar 

  10. Bolanowski Jr S, Zwislocki J. 1984. Intensity and frequency characteristics of pacinian corpuscles. ii. receptor potentials. Journal of neurophysiology. 51(4):793–811.

    Google Scholar 

  11. Bolanowski Jr S, Zwislocki JJ. 1984. Intensity and frequency characteristics of pacinian corpuscles. i. action potentials. Journal of neurophysiology. 51(4):812–830.

    Google Scholar 

  12. Bolanowski Jr SJ, Gescheider GA, Verrillo RT, Checkosky CM. 1988. Four channels mediate the mechanical aspects of touch. The Journal of the Acoustical society of America. 84(5):1680–1694.

    Google Scholar 

  13. Brisben A, Hsiao S, Johnson K. 1999. Detection of vibration transmitted through an object grasped in the hand. Journal of neurophysiology. 81(4):1548–1558.

    Google Scholar 

  14. Cho H, Shin J, Shin CY, Lee SY, Oh U. 2002. Mechanosensitive ion channels in cultured sensory neurons of neonatal rats. Journal of Neuroscience. 22(4):1238–1247.

    Google Scholar 

  15. Drew LJ, Rugiero F, Wood JN. 2007. Touch. In: Current topics in membranes. vol. 59. Elsevier; p. 425–465.

    Google Scholar 

  16. Freeman AW, Johnson KO. 1982. Cutaneous mechanoreceptors in macaque monkey: temporal discharge patterns evoked by vibration, and a receptor model. The Journal of physiology. 323(1):21–41.

    Google Scholar 

  17. Grandori F, Pedotti A. 1980. Theoretical analysis of mechano-to-neural transduction in pacinian corpuscle. IEEE Transactions on Biomedical Engineering. BME-27(10):559–565.

    Google Scholar 

  18. Grandori F, Pedotti A. 1982. A mathematical model of the pacinian corpuscle. Biological cybernetics. 46(1):7–16.

    Google Scholar 

  19. Gray JAB, Malcolm J. 1950. The initiation of nerve impulses by mesenteric pacinian corpuscles. Proceedings of the Royal Society of London Series B-Biological Sciences. 137(886):96–114.

    Google Scholar 

  20. Hamill OP, Martinac B. 2001. Molecular basis of mechanotransduction in living cells. Physio- logical reviews. 81(2):685–740.

    Google Scholar 

  21. Hunt C, Takeuchi A. 1962. Responses of the nerve terminal of the pacinian corpuscle. The Journal of physiology. 160(1):1.

    Google Scholar 

  22. Johnson KO. 2001. The roles and functions of cutaneous mechanoreceptors. Current opinion in neurobiology. 11(4):455–461.

    Google Scholar 

  23. Kaczmarek KA, Webster JG, Bach-y Rita P, Tompkins WJ. 1991. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE transactions on biomedical engineering. 38(1):1–16.

    Google Scholar 

  24. Kajimoto H. 2016. Electro-tactile display: principle and hardware. In: Pervasive haptics. Springer; p. 79–96.

    Google Scholar 

  25. Kajimoto H, Kawakami N, Maeda T, Tachi S. 1999. Tactile feeling display using functional electrical stimulation. In: Proc. 1999 ICAT. p. 133.

    Google Scholar 

  26. Kajimoto H, Kawakami N, Maeda T, Tachi S. 2004. Electro-tactile display with tactile primary color approach. Graduate School of Information and Technology, The University of Tokyo.

    Google Scholar 

  27. Kandel E, Schwartz J, Jessell T. 1991. Principles of neural science. Elsevier. Prentice-Hall International edit.

    Google Scholar 

  28. Kandel E, Schwartz J, Jessell T. 1991. Principles of neural science. Elsevier. Prentice-Hall International edit.

    Google Scholar 

  29. Kuroki S, Kajimoto H, Nii H, Kawakami N, Tachi S. 2007. Proposal for tactile sense presentation that combines electrical and mechanical stimulus. In: Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07). IEEE. p. 121–126.

    Google Scholar 

  30. LaMotte RH, Srinivasan MA. 1991. Surface microgeometry: Tactile perception and neural encoding. In: Information processing in the somatosensory system. Springer; p. 49–58.

    Google Scholar 

  31. Loewenstein W, Skalak R. 1966. Mechanical transmission in a pacinian corpuscle. an analysis and a theory. The Journal of physiology. 182(2):346–378.

    Google Scholar 

  32. Loewenstein WR. 1959. The generation of electric activity in a nerve ending. Annals of the New York Academy of Sciences. 81(2):367–387.

    Google Scholar 

  33. Loewenstein WR, Altamirano-Orrego R. 1958. The refractory state of the generator and propagated potentials in a pacinian corpuscle. The Journal of general physiology. 41(4):805–824.

    Google Scholar 

  34. Mizuhara R, Takahashi A, Kajimoto H. 2019. Enhancement of subjective mechanical tactile intensity via electrical stimulation. In: Proceedings of the 10th Augmented Human Interna- tional Conference 2019. p. 1–5

    Google Scholar 

  35. Ozeki M, Sato M. 1964. Initiation of impulses at the non-myelinated nerve terminal in pacinian corpuscles. The Journal of physiology. 170(1):167.

    Google Scholar 

  36. Pawson L, Bolanowski SJ. 2002. Voltage-gated sodium channels are present on both the neural and capsular structures of pacinian corpuscles. Somatosensory & motor research. 19(3):231–237.

    Google Scholar 

  37. Quindlen JC, Stolarski HK, Johnson MD, Barocas VH. 2016. A multiphysics model of the pacinian corpuscle. Integrative Biology. 8(11):1111–1125.

    Google Scholar 

  38. Rahul Kumar R, Manivannan M. 2021. Spatial summation of electro-tactile displays at sub- threshold level (in press). In: International Conference on Human Interaction and Emerging Technologies. Springer. p. 00–00.

    Google Scholar 

  39. Saal HP, Delhaye BP, Rayhaun BC, Bensmaia SJ. 2017. Simulating tactile signals from the whole hand with millisecond precision. Proceedings of the National Academy of Sciences. 114(28):E5693–E5702.

    Google Scholar 

  40. Sato M. 1961. Response of pacinian corpuscles to sinusoidal vibration. The Journal of physiology. 159(3):391–409.

    Google Scholar 

  41. Skedung L, Arvidsson M, Chung JY, Stafford CM, Berglund B, Rutland MW. 2013. Feeling small: exploring the tactile perception limits. Scientific reports. 3:2617.

    Google Scholar 

  42. Summers IR, Pitts-Yushchenko S, Winlove CP. 2018. Structure of the pacinian corpuscle: Insights provided by improved mechanical modeling. IEEE Transactions on Haptics. 11(1):146–150.

    Google Scholar 

  43. Vasudevan MK, Sadanand V, Muniyandi M, Srinivasan MA. 2020a. Coding source localization through inter-spike delay: modeling a cluster of pacinian corpuscles using time-division multiplexing approach. Somatosensory & Motor Research. 37(2):63–73.

    Google Scholar 

  44. Vasudevan MK, Ray RK, Muniyandi M. 2020b. Computational model of a pacinian corpuscle for an electrical stimulus: Spike-rate and threshold characteristics. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Springer. p. 203–213.

    Google Scholar 

  45. Verrillo RT. 1966. Vibrotactile sensitivity and the frequency response of the pacinian corpuscle. Psychonomic Science. 4(1):135–136.

    Google Scholar 

  46. Wagner CR, Lederman SJ, Howe RD. 2004. Design and performance of a tactile shape display using rc servomotors. Haptics-e. 3(4):1–6.

    Google Scholar 

  47. Wu G, Ekedahl R, Stark B, Carlstedt T, Nilsson B, Hallin RG. 1999. Clustering of pacinian corpuscle afferent fibres in the human median nerve. Experimental brain research. 126(3):399–409.

    Google Scholar 

  48. Yem V, Okazaki R, Kajimoto H. 2016. Fingar: combination of electrical and mechanical stimulation for high-fidelity tactile presentation. In: Acm siggraph 2016 emerging technologies. p. 1–2.

    Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the suggestions given by the members of Haptics Lab for the improvement of this model.

Declaration of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhan Kumar, V., Sadanand, V., Manivannan, M. (2021). Computational Model of a Pacinian Corpuscle for Hybrid-Stimuli: Spike-Rate and Threshold Characteristics. In: Manocha, A.K., Jain, S., Singh, M., Paul, S. (eds) Computational Intelligence in Healthcare. Health Information Science. Springer, Cham. https://doi.org/10.1007/978-3-030-68723-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68723-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68722-9

  • Online ISBN: 978-3-030-68723-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics