Skip to main content

Contactless Human Monitoring: Challenges and Future Direction

  • Chapter
  • First Online:
Contactless Human Activity Analysis

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 200))

Abstract

Human activity recognition and analysis have a great number of important applications in numerous fields including computer vision, ubiquitous computing, human-computer interactions, healthcare, robotics, and surveillance. Video-based and sensor-based human activity recognition have progressed tremendously in the last two decades. In this chapter, we highlight the major challenges and future research directions in contactless human activity monitoring. More specifically, we will present sensor-level challenges, feature-level challenges, methodological issues, implementation-level aspects, and various application-level challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://venturebeat.com/2020/07/28/nvidia-bmw-red-hat-and-more-on-the-promise-of-ai-edge-computing-and-computer-vision/.

  2. 2.

    https://carnegieendowment.org/2019/09/17/global-expansion-of-ai-surveillance-pub-79847.

  3. 3.

    https://airport-world.com/australias-avalon-airport-installs-pioneering-touchless-technology/.

  4. 4.

    https://ai.facebook.com/blog/hand-tracking-deep-neural-networks.

  5. 5.

    https://docs.microsoft.com/en-us/hololens/hololens2-basic-usage.

References

  1. Poppe, R.: A survey on vision-based human action recognition. Image Vision Comput. 28(6), 976–990 (2010)

    Article  Google Scholar 

  2. Ahad, M.A.R.: Vision and sensor based human activity recognition: Challenges ahead, chapter 2. In: Advancements in Instrumentation and Control in Applied System Applications, IGI Global, pp. 17–35 (2020)

    Google Scholar 

  3. Ahad, M. A. R., Lago, P., Inoue, S.: Human activity recognition challenge, Publisher: Springer Nature Switzerland AG (2020)

    Google Scholar 

  4. Ahad, M.A.R.: Computer vision and action recognition: A guide for image processing and computer vision community for action understanding, ISBN: 978-94-91216-20-6, available in Springer (2011)

    Google Scholar 

  5. Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4) (2014)

    Google Scholar 

  6. Akdemir, U., Turaga, P., Chellappa, R.: An ontology based approach for activity recognition from video. In: Proceedings of the 16th ACM International Conference on Multimedia, MM ’08, pp. 709–712, New York, NY, USA, Association for Computing Machinery (2008)

    Google Scholar 

  7. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity recognition methods. Front. Robot. AI 2, 28 (2015)

    Article  Google Scholar 

  8. Perry, S.: Image and Video Noise: An Industry Perspective, pp. 207–234. Springer International Publishing, Cham (2018)

    Google Scholar 

  9. Yang, X., Zhang, Z.: Reconstruction of underwater images with distortion using robust image registration. In: Asundi, A., Fujigaki, M., Xie, H., Zhang, Q., Zhang, S., Zhu, J., Kemao, Q. (eds.) Seventh International Conference on Optical and Photonic Engineering (icOPEN 2019), vol. 11205, pp. 116–121. International Society for Optics and Photonics, SPIE (2019)

    Google Scholar 

  10. Chellappa, R.,rgios Theodoridis, (eds.) Chapter 1—Multiview Video: Acquisition, Processing, Compression, and Virtual View Rendering, pp. 3–74. Academic Press (2018)

    Google Scholar 

  11. Wang, P., Li, W., Ogunbona, P., Wan, J., Escalera, S.: RGB-D-based human motion recognition with deep learning: a survey. Comput. Vis. Image Underst. 171, 118–139 (2018)

    Article  Google Scholar 

  12. Chen, F., Masi, C.: Effect of noise on automatic speech recognition system error rate. Proc. Hum. Factors Ergon. Soc. Ann. Meet. 44(37), 606–609 (2000)

    Article  Google Scholar 

  13. Guang Yi Chen: An experimental study for the effects of noise on face recognition algorithms under varying illumination. Multi. Tools Appl. 78(18), 26615–26631 (2019). Sep

    Article  Google Scholar 

  14. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  15. Ranjan, R., Sankaranarayanan, S., Bansal, A., Bodla, N., Chen, J., Patel, V.M., Castillo, C.D., Chellappa, R.: Deep learning for understanding faces: Machines may be just as good, or better, than humans. IEEE Signal Process. Mag. 35(1), 66–83 (2018)

    Article  Google Scholar 

  16. Ahad, M.A.R., Ngo, T.T., Antar, A.D., Ahmed, M., Hossain, T., Muramatsu, D., Makihara, Y., Inoue, S., Yagi, Y.: Wearable sensor-based gait analysis for age and gender estimation. Sensors 20(8), 2424 (2020)

    Google Scholar 

  17. Mahbub, U., Sarkar, S., Patel, V.M., Chellappa, R.: Active user authentication for smartphones: a challenge data set and benchmark results. In: 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8 (2016)

    Google Scholar 

  18. Mahbub, U., Sarkar, S., Chellappa, R.: Partial face detection in the mobile domain. Image Vision Comput. 82, 1–17 (2019), ISSN 0262-8856. https://doi.org/10.1016/j.imavis.2018.12.003

  19. Mahbub, U., Komulainen, J., Ferreira, D., Chellappa, R.: Continuous authentication of smartphones based on application usage. In: IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 1, no. 3, pp. 165–180, July 2019. https://doi.org/10.1109/TBIOM.2019.2918307

  20. Mahbub, U., Chellappa, R.: PATH: Person authentication using trace histories. In: 2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, 2016, pp. 1-8, https://doi.org/10.1109/UEMCON.2016.7777911

  21. Papamichail, M.D., Chatzidimitriou, K.C., Karanikiotis, T., Oikonomou, N.-C.I., Symeonidis, A.L., Saripalle., S.K.: Behavioral biometrics dataset towards continuous implicit authentication, March 2019

    Google Scholar 

  22. Sitova, Z., Sedenka, J., Yang, Q., Peng, G., Zhou, G., Gasti, P., Balagani, K.S.: Hmog: New behavioral biometric features for continuous authentication of smartphone users. IEEE Trans. Inf. Forensics Secur. 11, 877–892 (2016)

    Article  Google Scholar 

  23. Kang, S.-M., Wildes, R.P.: Review of action recognition and detection methods. ArXiv, arXiv:1610.06906 (2016)

  24. Presti, L.L., La Cascia, M.: 3D skeleton-based human action classification: a survey. Pattern Recogn. 53, 130–147 (2016)

    Google Scholar 

  25. Zeng, M., Yu, T., Wang, X., Nguyen, L.T., Mengshoel, O.J., Lane, I.: Semi-supervised convolutional neural networks for human activity recognition. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 522–529 (2017)

    Google Scholar 

  26. Mabrouk, M.F., Ghanem, N.M., Ismail, M.A.: Semi supervised learning for human activity recognition using depth cameras. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 681–686 (2015)

    Google Scholar 

  27. Flouty, E., Zisimopoulos, O., Stoyanov, D.: Faceoff: anonymizing videos in the operating rooms. In: Stoyanov, D. (eds.), OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis, pp. 30–38. Springer International Publishing, Cham (2018)

    Google Scholar 

  28. Dai, J., Wu, J., Saghafi, B., Konrad, J., Ishwar, P.: Towards privacy-preserving activity recognition using extremely low temporal and spatial resolution cameras. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 68–76 (2015)

    Google Scholar 

  29. Dwork, C., Roth, A.: 2014. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9, 3–4 (August 2014), 211–407. https://doi.org/10.1561/0400000042

  30. Oculus. Hand tracking

    Google Scholar 

  31. Bo, N.B., Deboeverie, F., Eldib, M., Guan, J., Xie, X., Niño, J., Van Haerenborgh, D., Slembrouck, M., Van de Velde, S., Steendam, H., Veelaert, P.: Human mobility monitoring in very low resolution visual sensor network. Sensors (Basel, Switzerland) 14(11), 20800–20824 (2014)

    Google Scholar 

  32. Xiwei Huang, Yu., Liu, J.X., Hang, X., Han, Z., Rong, H., Yang, H., Yan, M., Hao, Yu.: Machine learning based single-frame super-resolution processing for lensless blood cell counting. Sensors (Basel, Switzerland) 16(11), 1836 (2016). Nov

    Article  Google Scholar 

  33. Antipov, G., Berrani, S.A., Ruchaud, N., Dugelay, J.L.: Learned vs. hand-crafted features for pedestrian gender recognition. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM ’15, pp. 1263–1266, New York, NY, USA, Association for Computing Machinery (2015)

    Google Scholar 

  34. Brigato, L., Iocchi, L.: A close look at deep learning with small data (2020)

    Google Scholar 

  35. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: The 5th International Conference on Learning Representations (2017) Cite arxiv:1611.03530Comment: Published in ICLR 2017

  36. Lin, H.W., Tegmark, M., Rolnick, D.: Why does deep and cheap learning work so well? J. Stat. Phys. 168(6), 1223–1247 (2017). Sep

    Article  MathSciNet  Google Scholar 

  37. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985)

    Google Scholar 

  38. Sejnowski, T.J.: The unreasonable effectiveness of deep learning in artificial intelligence. Proc. Natl. Acad. Sci. (2020)

    Google Scholar 

  39. Castro, F.M., Marín-Jiménez, M.J., Guil, N., de la Blanca, P.N.: Multimodal feature fusion for CNN-based gait recognition: an empirical comparison. Neural Comput. Appl. (2020)

    Google Scholar 

  40. Wang, M., Tighe, J., Modolo, D.: Combining detection and tracking for human pose estimation in videos. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  41. Jain, A., Zamir, A.R., Savarese, S., Saxena, A.: Structural-RNN: deep learning on spatio-temporal graphs. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5308–5317 (2016)

    Google Scholar 

  42. Zhao, R., Hu, Y., Dotzel, J., De Sa, C., Zhang, Z.: Improving neural network quantization without retraining using outlier channel splitting. In: International Conference on Machine Learning (ICML), pp. 7543–7552, June 2019

    Google Scholar 

  43. Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F., Song, J.: Forward and backward information retention for accurate binary neural networks. In: IEEE CVPR (2020)

    Google Scholar 

  44. Chen, H., Wang, Y., Xu, C., Yang, Z., Liu, C., Shi, B., Xu, C., Xu, C., Tian, Q.: Data-free learning of student networks. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3513–3521 (2019)

    Google Scholar 

  45. Gomez, A.N., Zhang, I., Kamalakara, S.R., Madaan, D., Swersky, K., Gal, Y., Hinton, G.E.: Learning sparse networks using targeted dropout. ArXiv, arXiv:1905.13678 (2019)

  46. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-based human activity recognition: overview, challenges and opportunities. ArXiv, arXiv:2001.07416 (2020)

  47. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  48. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017)

    Google Scholar 

  49. Kim, T.S., Reiter, A.: Interpretable 3D human action analysis with temporal convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1623–1631 (2017)

    Google Scholar 

  50. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier (2016)

    Google Scholar 

  51. Lipton, Z.C.: The mythos of model interpretability (2017)

    Google Scholar 

  52. Kim, E.: Interpretable and accurate convolutional neural networks for human activity recognition. IEEE Trans. Industr. Inf. 16(11), 7190–7198 (2020)

    Article  Google Scholar 

  53. Pal, K.K., Sudeep, K.S.: Preprocessing for image classification by convolutional neural networks. In: 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 1778–1781 (2016)

    Google Scholar 

  54. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop, pp. 9–50. Springer-Verlag, Berlin, Heidelberg (1998)

    Google Scholar 

  55. Hossain, T., Ahad, M.A.R., Inoue, S.: A method for sensor-based activity recognition in missing data scenario. Sensors 20(14), 3811 (2020)

    Google Scholar 

  56. García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M., Herrera, F.: Big data preprocessing: methods and prospects. Big Data Anal. 1(1), 9 (2016)

    Google Scholar 

  57. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  58. Dunjko, V., Wittek, P.: A non-review of Quantum Machine Learning: trends and explorations. Quant. Views 4, 32 (2020). March

    Article  Google Scholar 

  59. Sarma, S., Deng, D.L., Duan, L.M.: Machine learning meets quantum physics. Phys. Today 72, 48–54 (2019)

    Google Scholar 

  60. Pham, H.H., Khoudour, L., Crouzil, A., Zegers, P., Velastin Carroza, S.A.: Video-based human action recognition using deep learning: a review (2015)

    Google Scholar 

  61. Cook, D., Feuz, K.D., Krishnan, N.C.: Transfer learning for activity recognition: a survey. Knowl. Inf. Syst. 36(3), 537–556 (2013). Sep

    Article  Google Scholar 

  62. Sousa, R., Silva, L.M., Alexandre, L.A., Santos, J., De Sá, J.M.: Transfer learning: current status, trends and challenges. In: 20th Portuguese Conference on Pattern Recognition (2014)

    Google Scholar 

  63. Ahmad, W., Kazmi, B.M., Ali, H.: Human activity recognition using multi-head CNN followed by LSTM. In: 2019 15th International Conference on Emerging Technologies (ICET), pp. 1–6 (2019)

    Google Scholar 

  64. Mutegeki, R., Han, D.S.: A CNN-LSTM approach to human activity recognition. In: 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 362–366 (2020)

    Google Scholar 

  65. Ehatisham-Ul-Haq, M., Javed, A., Azam, M.A., Malik, H.M.A., Irtaza, A., Lee, I.H., Mahmood, M.T.: Robust human activity recognition using multimodal feature-level fusion. IEEE Access 7, 60736–60751 (2019)

    Article  Google Scholar 

  66. Khaire, P., Imran, J., Kumar, P.: Human activity recognition by fusion of RGB, depth, and skeletal data. In: Chaudhuri, B.B., Kankanhalli, M.S., Balasubramanian Raman, M.S. (eds.), Proceedings of 2nd International Conference on Computer Vision & Image Processing, pp. 409–421. Springer, Singapore (2018)

    Google Scholar 

  67. Khaire, P., Imran, J., Kumar, P.: Deep audio-visual learning: a survey. ArXiv, arXiv:2001.04758 (2020)

  68. Zou, H., Yang, J., Das, H.P., Liu, H., Zhou, Y., Spanos, C.J.: Wifi and vision multimodal learning for accurate and robust device-free human activity recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 426–433 (2019)

    Google Scholar 

  69. Liu, C., Hu, Y., Li, Y., Song, S., Liu, J.: Pku-mmd: a large scale benchmark for continuous multi-modal human action understanding. In: ACM Multimedia Workshop (2017)

    Google Scholar 

  70. Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S., Kautz, J.: Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4207–4215 (2016)

    Google Scholar 

  71. Sahoo, D., Pham, Q., Lu, J., Hoi, S.C.: Online deep learning: learning deep neural networks on the fly (2017)

    Google Scholar 

  72. Guo, Y., Codella, N.C., Karlinsky, L., Codella, J.V., Smith, J.R., Saenko, K., Rosing, T., Feris, R.: A broader study of cross-domain few-shot learning (2019)

    Google Scholar 

  73. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: International Conference on Learning Representations (2019)

    Google Scholar 

  74. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  75. Fei-Fei, L., Fergus, R. and Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    Google Scholar 

  76. Wang, F., Chen, L., Li, C., Huang, S., Chen, Y., Qian, C., Change Loy, C.: The devil of face recognition is in the noise. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.), Computer Vision–ECCV 2018, pp. 780–795. Springer International Publishing, Cham (2018)

    Google Scholar 

  77. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Unsupervised label noise modeling and loss correction. In: International Conference on Machine Learning (ICML), June 2019

    Google Scholar 

  78. Tanno, R., Saeedi, A., Sankaranarayanan, S., Alexander, D.C., Silberman, N.: Learning from noisy labels by regularized estimation of annotator confusion. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11236–11245 (2019)

    Google Scholar 

  79. Zhang, Y., Deng, W., Wang, M., Hu, J., Li, X., Zhao, D., Wen, D.: Global-local GCN: Large-scale label noise cleansing for face recognition. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  80. Shen, Y., Ji, R., Chen, Z., Hong, X., Zheng, F., Liu, J., Xu, M., Tian, Q.: Noise-aware fully webly supervised object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  81. Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  82. Feichtenhofer, C.: X3d: expanding architectures for efficient video recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  83. Zhang, X., Zhou, X., Lin, M., Sun, J.: An extremely efficient convolutional neural network for mobile devices, Shufflenet (2017)

    Google Scholar 

  84. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks (2019)

    Google Scholar 

  85. Duckworth, P., Hogg, D.C., Cohn, A.G.: Unsupervised human activity analysis for intelligent mobile robots. Artif. Intell. 270, 67–92 (2019)

    Article  Google Scholar 

  86. Uddin, M.Z., Muramatsu, D., Noriko, T., Ahad, M.A.R., Yagi, Y.: Spatio-temporal silhouette sequence reconstruction for gait recognition against occlusion. IPSJ Trans. Comput. Vis. Appl. 11(9), 1–18 (2019)

    Google Scholar 

  87. Deng, B.L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware acceleration for neural networks: a comprehensive survey. Proc. IEEE 108(4), 485–532 (2020)

    Article  Google Scholar 

  88. Sozinov, K., Vlassov, V., Girdzijauskas, S.: Human activity recognition using federated learning. In: 2018 IEEE International Conference on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 1103–1111 (2018)

    Google Scholar 

  89. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020). Jun

    Article  Google Scholar 

  90. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.), Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282, Fort Lauderdale, FL, USA, 20–22 April 2017. PMLR

    Google Scholar 

  91. Munro, J., Damen, D.: Multi-modal domain adaptation for fine-grained action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  92. Wu, D., Sharma, N., Blumenstein, M.: Recent advances in video-based human action recognition using deep learning: a review. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2865–2872 (2017)

    Google Scholar 

  93. Trong, N.P., Minh, A.T., Nguyen, H., Kazunori, K., Le Hoai, B.: A survey about view-invariant human action recognition. In: 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 699–704 (2017)

    Google Scholar 

  94. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3d human pose using multi-view geometry. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  95. Ji, X.-F., Qian-Qian, W., Zhao-Jie, J., Wang, Y.-Y.: Study of human action recognition based on improved spatio-temporal features. Int. J. Autom. Comput. 11(5), 500–509 (2014). Oct

    Article  Google Scholar 

  96. Dhiman, C., Vishwakarma, D.K.: View-invariant deep architecture for human action recognition using two-stream motion and shape temporal dynamics. IEEE Trans. Image Process. 29, 3835–3844 (2020)

    Article  Google Scholar 

  97. Zheng, J., Jiang, Z.: Learning view-invariant sparse representations for cross-view action recognition. In: 2013 IEEE International Conference on Computer Vision, pp. 3176–3183 (2013)

    Google Scholar 

  98. Xia, L., Chen, C.C., Aggarwal, J.K.: View invariant human action recognition using histograms of 3d joints. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–27 (2012)

    Google Scholar 

  99. Liu, M., Liu, H., Chen, C.: Enhanced skeleton visualization for view invariant human action recognition. Pattern Recogn. 68, 346–362 (2017)

    Article  Google Scholar 

  100. Rahmani, H., Mian, A.: Learning a non-linear knowledge transfer model for cross-view action recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2458–2466 (2015)

    Google Scholar 

  101. Castelluccia, C., Le Métayer Inria, D.: Impact analysis of facial recognition. Working Paper or Preprint, February 2020

    Google Scholar 

  102. Ahad, M.A.R., Antar, A.D., Shahid, O.: Vision-based action understanding for assistive healthcare: A short review. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, USA, pp. 1–11 (2019)

    Google Scholar 

  103. Fang, F., Nguyen, T.H., Pickles, R., Lam, W.Y., Clements, G.R., An, B., Singh, A., Tambe, M., Lemieux, A.: Deploying paws: field optimization of the protection assistant for wildlife security. In: AAAI (2016)

    Google Scholar 

  104. Punn, N.S., Sonbhadra, S.K., Agarwal, S.: Monitoring covid-19 social distancing with person detection and tracking via fine-tuned yolo v3 and deepsort techniques. ArXiv, arXiv:2005.01385 (2020)

  105. Lygouras, E., Santavas, N., Taitzoglou, A., Tarchanidis, K., Mitropoulos, A., Gasteratos, A.: Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors 19(16), 3542 (2019). Aug

    Article  Google Scholar 

  106. Rho, S., Min, G., Chen, W.: Advanced issues in artificial intelligence and pattern recognition for intelligent surveillance system in smart home environment. Eng. Appl. Artif. Intell. 25(7), 1299–1300 (2012). Advanced issues in Artificial Intelligence and Pattern Recognition for Intelligent Surveillance System in Smart Home Environment

    Google Scholar 

  107. Rajpoot, Q.M., Jensen, C.D.: Video surveillance: privacy issues and legal compliance. In: Kumar, V., Svensson, J. (eds.), Promoting Social Change and Democracy through Information Technology. IGI global (2015)

    Google Scholar 

  108. Wang, X., Ellul, J., Azzopardi, G.: Elderly fall detection systems: a literature survey. Front. Robot. AI 7, 71 (2020)

    Article  Google Scholar 

  109. Zhang, Z., Conly, C., Athitsos, V.: A survey on vision-based fall detection. In: Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’15, New York, NY, USA. Association for Computing Machinery (2015)

    Google Scholar 

  110. Mshali, H., Lemlouma, T., Moloney, M., Magoni, D.: A survey on health monitoring systems for health smart homes. Int. J. Indus. Ergon

    Google Scholar 

  111. Bartula, M., Tigges, T., Muehlsteff, J.: Camera-based system for contactless monitoring of respiration. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2672–2675 (2013)

    Google Scholar 

  112. Walterscheid, I., Biallawons, O., Berens, P.: Contactless respiration and heartbeat monitoring of multiple people using a 2-d imaging radar. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3720–3725 (2019)

    Google Scholar 

  113. Karunaratne, I., Atukorale, A.S., Perera, H.: Surveillance of human-computer interactions: a way forward to detection of users’ psychological distress. In: 2011 IEEE Colloquium on Humanities, Science and Engineering, pp. 491–496 (2011)

    Google Scholar 

  114. Kang, M., Xia, L., Chen, H.: Research on the crowd abnormal behavior recognition in surveillance video based on modified social force model. In: 2019 3rd International Conference on Imaging, Signal Processing and Communication (ICISPC), pp. 101–106 (2019)

    Google Scholar 

  115. Hossain, M.S., Muhammad, G., Guizani, N.: Explainable ai and mass surveillance system-based healthcare framework to combat covid-i9 like pandemics. IEEE Network 34(4), 126–132 (2020)

    Article  Google Scholar 

  116. Al Hossain, F., Lover, A.A., Corey, G.A., Reich, N.G., Rahman, T.: Flusense: a contactless syndromic surveillance platform for influenza-like illness in hospital waiting areas. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4(1) (2020)

    Google Scholar 

  117. Villarroel, M., Chaichulee, S., Jorge, J., Davis, S., Green, G., Arteta, C., Zisserman, A., McCormick, K., Watkinson, P., Tarassenko, L.: Non-contact physiological monitoring of preterm infants in the neonatal intensive care unit. NPJ Digital Med. 2(1), 128 (2019)

    Google Scholar 

  118. Irtija, N., Sami, M., Ahad, M.A.R.: Fatigue Detection Using Facial Landmarks. In: 4th Int. Symposium on Affective Science and Engineering, and the 29th Modern Artificial Intelligence and Cognitive Science Conference (ISASE-MAICS), WA, USA, 2018

    Google Scholar 

  119. Sikander, G., Anwar, S.: Driver fatigue detection systems: a review. IEEE Trans. Intell. Transp. Syst. 20(6), 2339–2352 (2019)

    Article  Google Scholar 

  120. Guede-Fernández, F., Fernández-Chimeno, M., Ramos-Castro, J., García-González, M.A.: Driver drowsiness detection based on respiratory signal analysis. IEEE Access 7, 81826–81838 (2019)

    Article  Google Scholar 

  121. Han, H., Jang, H., Yoon, S.W.: Driver head posture monitoring using mems magnetometer and neural network for long-distance driving fatigue analysis. In: 2019 IEEE SENSORS, pp. 1–4 (2019)

    Google Scholar 

  122. Mueid, R.M., Ahmed, C., Ahad, M.: Pedestrian activity classification using patterns of motion and histogram of oriented gradient. J. Multimodal User Interfaces 1–7 (2015). Springer

    Google Scholar 

  123. Gong, G., Wang, X., Mu, Y., Tian, Q.: Learning temporal co-attention models for unsupervised video action localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  124. Cioppa, A., Deliege, A., Giancola, S., Ghanem, B., Droogenbroeck, M.V., Gade, R., Moeslund, T.B.: A context-aware loss function for action spotting in soccer videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  125. Kozłowski, K., Korytkowski, M., Szajerman, D.: Visual Analysis of Computer Game Output Video Stream for Gameplay Metrics, pp. 538–552. Springer, Cham (2020)

    Google Scholar 

  126. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation learning: a survey of learning methods. ACM Comput. Surv. 50, 21:1–21:35 (2017)

    Google Scholar 

  127. Torabi, F., Warnell, G., Stone, P.: Recent advances in imitation learning from observation. In: IJCAI (2019)

    Google Scholar 

  128. Atkeson, C., Schaal, S.: Robot learning from demonstration. In: ICML (1997)

    Google Scholar 

  129. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483 (2009)

    Google Scholar 

  130. Jette, A.M.: The promise of assistive technology to enhance work participation (2017)

    Google Scholar 

  131. Ahmed, M., Idrees, M., ul Abideen, Z., Mumtaz, R., Khalique, S.: Deaf talk using 3D animated sign language: a sign language interpreter using Microsoft’s kinect v2. In: 2016 SAI Computing Conference (SAI), pp. 330–335 (2016)

    Google Scholar 

  132. Aloysius, N., Geetha, M.: Understanding vision-based continuous sign language recognition. Multimedia Tools Appl. 79(31), 22177–22209 (2020)

    Google Scholar 

  133. Nishimori, M., Saitoh, T., Konishi, R.: Voice controlled intelligent wheelchair. In: SICE Annual Conference, pp. 336–340 (2007)

    Google Scholar 

  134. Bai, J., Lian, S., Liu, Z., Wang, K., Liu, D.: Smart guiding glasses for visually impaired people in indoor environment. IEEE Trans. Consum. Electron. 63(3), 258–266 (2017)

    Article  Google Scholar 

  135. Aafaq, N., Zulqarnain Gilani, S., Liu, W., Mian, A.: Video description. ACM Comput. Surv. (CSUR) 52, 1–37 (2020)

    Google Scholar 

  136. Lu, J., Xiong, C., Parikh, D. and Socher, R.: Knowing when to look: adaptive attention via a visual sentinel for image captioning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3242–3250 (2017)

    Google Scholar 

  137. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3128–3137 (2015)

    Google Scholar 

  138. Hoffmann, F., Tyroller, M.I., Wende, F., Henze, N.: User-defined interaction for smart homes: voice, touch, or mid-air gestures? In: Proceedings of the 18th International Conference on Mobile and Ubiquitous Multimedia, MUM ’19, New York, NY, USA. Association for Computing Machinery (2019)

    Google Scholar 

  139. Rossi, M., D’Avenio, G., Morelli, S., Grigioni, M.: Augmented reality app to improve quality of life of people with cognitive and sensory disabilities. In: 2020 IEEE International Workshop on Metrology for Industry 4.0 IoT, pp. 59–62 (2020)

    Google Scholar 

  140. Kanno, K.M., Lamounier, E.A., Cardoso, A., Lopes, E.J., de Lima, G.F.M.: Augmented reality system for aiding mild alzheimer patients and caregivers. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 593–594 (2018)

    Google Scholar 

  141. Chu, F.J., Xu, R., Zhang, Z., Vela, P.A., Ghovanloo, M.: The helping hand: an assistive manipulation framework using augmented reality and tongue-drive interfaces. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2158–2161 (2018)

    Google Scholar 

  142. Maidenbaum, S., Amedi, A.: Blind in a virtual world: mobility-training virtual reality games for users who are blind. In: 2015 IEEE Virtual Reality (VR), pp. 341–342 (2015)

    Google Scholar 

  143. Rashid, Z., Melià-Seguí, J., Pous, R., Peig, E.: Using augmented reality and internet of things to improve accessibility of people with motor disabilities in the context of smart cities. Future Gener. Comput. Syst. 76, 248–261 (2017)

    Article  Google Scholar 

  144. Chien-Yu, L., Chao, J., Wei, H.: Augmented reality-based assistive technology for handicapped children. In: 2010 International Symposium on Computer, Communication, Control and Automation (3CA), vol. 1, pp. 61–64 (2010)

    Google Scholar 

  145. Gauci, J., Conti, E., Liang, Y., Virochsiri, K., He, Y., Kaden, Z., Narayanan, V., Ye, X., Chen, Z., Fujimoto, S.: Horizon: Facebook’s open source applied reinforcement learning platform. arXiv preprint arXiv:1811.00260 (2018)

  146. Stephanidis, C., Salvendy, G., Antona, M., Chen, J.Y., Dong, J., Duffy, V.G., Fang, X., Fidopiastis, C., Fragomeni, G., Fu, L.P., Guo, Y.: Seven HCI grand challenges. Int. J. Human–Comput. Interact. 35(14), 1229–1269 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upal Mahbub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahbub, U., Rahman, T., Ahad, M.A.R. (2021). Contactless Human Monitoring: Challenges and Future Direction. In: Ahad, M.A.R., Mahbub, U., Rahman, T. (eds) Contactless Human Activity Analysis. Intelligent Systems Reference Library, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-68590-4_12

Download citation

Publish with us

Policies and ethics