Skip to main content

Polymerization Process Intensification Using Circulating Fluidized Bed and Rotating Fluidized Bed Systems

  • Chapter
  • First Online:
Transport Phenomena in Multiphase Systems

Abstract

Gas phase olefin polymerizations are now widely achieved in fluidized bed reactors. In fluidized bed reactors, small catalyst particles are introduced into the bed, and when exposed to the gas flow (monomer), polymerization occurs reaching to a typical polymer particle size of 1000–3000 μm diameter. In spite of the significant application of fluidized bed polymerization reactors, they have shown limited flexibility in achieving high gas throughput mainly because of the heat removal limitation. To decrease the very high temperature rise in fluidized bed polymerization reactors, two different process concepts and numerical simulation of those concept processes are discussed. This chapter investigates the feasibility of using circulating fluidized bed (CFB) and rotating fluidized bed (RFB) polymerization reactors for increasing the polymer production rate using the computational fluid dynamics (CFD) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi KY, Ray WH (1985) The dynamic behavior of fluidized bed reactors for solid catalysed gas phase olefin polymerization. Chem Eng Sci 40:2261–2279

    Article  Google Scholar 

  2. Hutchinson RA, Chen CM, Ray WH (1992) Polymerization of olefins through heterogeneous catalysis. X. Modeling of particle growth and morphology. J Appl Polym Sci 44:1389–1414

    Article  Google Scholar 

  3. Chen YM (1987) Fundamental of a centrifugal fluidized bed. AIChE J 33:722–72

    Article  Google Scholar 

  4. Ahmadzadeh A (2016) Numerical simulation of olefin polymerization in a rotating fluidized bed. Ph.D. thesis, Illinois Institute of Technology

    Google Scholar 

  5. Ahmadzadeh A, Arastoopour H (2008) Three dimensional numerical simulation of a horizontal rotating fluidized bed. Powder Technol 183:410–416

    Article  Google Scholar 

  6. Ahmadzadeh A, Arastoopour H, Teymour F (2004) Fluidization behavior of rotating fluidized beds. In: Arena L, Chirone R, Miccio M, Salatino P (eds), Fluidization XI, ISBN 0-918902-52-5, Engineering Conferences International, pp 667–674

    Google Scholar 

  7. Ahmadzadeh A, Arastoopour H, Teymour F (2003) Numerical simulation of gas and particle flow in a rotating fluidized bed. Ind Eng Chem Res 42:2627–2633

    Article  Google Scholar 

  8. Gidaspow D (2018) Provisional US Patent Application, application number 62/615,798, 1/19/2018

    Google Scholar 

  9. Xie T, McAuley KB, Hsu JC, Bacon DW (1994) Gas phase ethylene polymerization: production processes, polymer properties, and reactor modeling. Ind Eng Chem Res 33:449–479

    Article  Google Scholar 

  10. Choi KY, Ray WH (1985) Recent developments in transition metal catalytic olefin polymerization-a survey: I ethylene polymerization. JMS Rev Macromol Chem Phys C25(1):1-55

    Article  Google Scholar 

  11. Brown GL, Warner DF, Byon JH (1981) Exothermic polymerization in a vertical fluid bed reactor system containing means therein and apparatus thereof, US Patent 4,255,542, 10 March 1981

    Google Scholar 

  12. Yermakov Y, Zakharov V (1975) One-component catalysts for polymerization of olefins. Adv Catal 24:173–219

    Google Scholar 

  13. Dhodapkar S, Jain P, Villa C (2016) Designing polymerization reaction systems. CEP, February:1–25

    Google Scholar 

  14. Roger D, Laszlo H, Pierre M (1975) Process for dry polymerization of olefins. US Patent 3,922,322, 25 Nov 1975

    Google Scholar 

  15. Rokkam RG, Fox RO, Muhle ME (2011) Computational modeling of gas-solids fluidized bed polymerization reactors, Chapter 12. In: Pannala S, Syamlal M, O’Brien, TJ (eds) Computational gas-solids flows and reacting systems: theory, methods and practice, engineering science reference, Pennsylvania, pp 373–397

    Google Scholar 

  16. Hendrickson G (2006) Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chem Eng Sci 61:1041–1064

    Article  Google Scholar 

  17. Chen XZ, Luo ZH, Yan WC, Lu YH, Ng IS (2011) Three-dimensional CFD-PBM coupled model of the temperature fields in fluidized bed polymerization reactors. AIChE J 57:3351–3366

    Article  Google Scholar 

  18. Mayank K (2016) Application of multiphase flow CFD in the gas phase polymerization process. In: Chaouki J, Berruti F, Cocco R (eds) Fluidization XV, ECI Symposium Series, 2016 http://dc.engconfint.org/fluidization-xv/65

  19. Mayank K (2016) Multiphase flow CFD capability development for gas phase polymerization processes. Presented at US Department of Energy, NETL, July 11 (2016)

    Google Scholar 

  20. Gidaspow D (2019) High production circulating fluidized bed polymerization reactors. Powder Technol 357:108–116

    Article  Google Scholar 

  21. Gidaspow D (1994) Multiphase flow and fluidization. Academic Press, New York

    MATH  Google Scholar 

  22. Gidaspow D, He Y, Chandra V (2015) A new slurry bubble column reactor for diesel fuel. Chem Eng Sci 134:784–799

    Article  Google Scholar 

  23. Gidaspow D, Jiradilok V (2009) Computational techniques. Nova Science, New York

    Google Scholar 

  24. Gidaspow D (2018) Design of the next generation polymerization reactor using CFD. AIChE Midwest Conference, IIT, Chicago, IL.

    Google Scholar 

  25. Syamlal M (1998) MFIX documentation: Numerical techniques. DOE/MC-31346-5824 NTIS/DE98002029. National Technical Information Service, Springfield, Virginia

    Google Scholar 

  26. ANSYS fluent theory guide, release 15.0 (Nov 2013) Canonsburg, PA

    Google Scholar 

  27. Gobin A, Neau H, Simonin O, Llinas JR, Reiling V, Selo JL (2003) Fluid dynamic numerical simulation of a gas phase polymerization reactor. Int J Numer Meth Fluids 43:1199–1220

    Article  Google Scholar 

  28. Gidaspow D, Bacelos MS (2018) Kinetic theory based multiphase flow with experimental verification. Rev Chem Eng 34:299–318

    Article  Google Scholar 

  29. Jiradilok V, Gidaspow D, Damronglerd S, Koves WJ, Mostofi R (2006) Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. Chem Eng Sci 61:5544–5559

    Article  Google Scholar 

  30. Gidaspow D, Chandra V (2014) Unequal granular temperature model for motion of platelets to the wall and red blood cells to the center. Chem Eng Sci 117:107–113

    Article  Google Scholar 

  31. Tartan M, Gidaspow D (2004) Measurement of granular temperature and stresses in risers. AIChE J 50(8):1760–1775

    Article  Google Scholar 

  32. Mayank K, Gidaspow D, Koves WJ (2011) Circulation of Geldart D type particles: Part I-High solids fluxes measurements and computation under solids slugging conditions. Chem Eng Sci 66:1649–167

    Article  Google Scholar 

  33. Kroger DG, Levy EK, Chen JC (1979) Flow characteristics in packed and fluidized rotating beds. Powder Technol 24:9–18

    Article  Google Scholar 

  34. Kroger, DG, Abdelnour G, Levy EK, Chen, JC (1980) Centrifugal fluidization: effects of particle density and size distribution. Chem Eng Commun 5:55–67

    Article  Google Scholar 

  35. Levy EK, Shakespeare, WJ, Tabatabaie-Raissi A, Chen JC (1981) Particle elutriation from centrifugal fluidized beds. AIChE J 77:86–95

    Google Scholar 

  36. Qian GH, Bagyi I, Pfeffer R, Shaw H, Stevens J (1999) Particle mixing in rotating fluidized beds: inference about the fluidized state. AIChE J 45(7):1401–1410

    Article  Google Scholar 

  37. Qian GH, Bagyi I, Burdick IW, Pfeffer R, Shaw H (2001) Gas–solid fluidization in a centrifugal field. AIChE J 47(5):1022–1034

    Article  Google Scholar 

  38. Marchisio DL, Pikturna JT, Fox RO, Vigil RD, Barresi AA (2003) Quadrature method of moments for population-balance equations. AIChE J 49:1266

    Article  Google Scholar 

  39. Marchisio DL, Vigil RD, Fox RO (2003) Quadrature method of moments for aggregation-breakage processes. J Colloid Interface Sci, 258:322–334

    Article  Google Scholar 

  40. Abbasi, E, Abbasian J, Arastoopour H (2015) CFD–PBE numerical simulation of CO2 capture using MgO-based sorbent. Powder Technol 286:616–628

    Article  Google Scholar 

  41. Abbasi E, Arastoopour H (2013) Numerical analysis and implementation of finite domain trial functions method of moments (FCMOM) in CFD codes. Chem Eng Sci 102:432–441

    Article  Google Scholar 

  42. Strumendo M, Arastoopour H (2010) Solution of population balance equations by finite size domain complete set of trial functions method of moments (FCMOM) for inhomogeneous systems. Ind Eng Chem Res 49(11):5222–5230

    Article  Google Scholar 

  43. Strumendo M, Arastoopour H (2009) Solution of bivariate population balance equations using the FCMOM. Ind Eng Chem Res 48(1):262–273

    Article  Google Scholar 

  44. Strumendo M, Arastoopour H (2008) Solution of PBE by non-infinite size domain. Chem Eng Sci 63:2624–2640

    Article  Google Scholar 

  45. Ahmadzadeh A, Arastoopour H, Teymour F, Strumendo M (2008) Population balance equations’ application in rotating fluidized bed polymerization reactor. Chem Eng Res Des 8(6):329–343

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arastoopour, H., Gidaspow, D., Lyczkowski, R.W. (2022). Polymerization Process Intensification Using Circulating Fluidized Bed and Rotating Fluidized Bed Systems. In: Transport Phenomena in Multiphase Systems. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-68578-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68578-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68577-5

  • Online ISBN: 978-3-030-68578-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics