Skip to main content

From Vernacular to Sustainable Contemporary Architecture: Urban Green and Patios

  • Chapter
  • First Online:
The Importance of Greenery in Sustainable Buildings

Part of the book series: Innovative Renewable Energy ((INREE))

Abstract

The majority of humans are exposed to environmental conditions that often challenge human health and well-being and also threaten natural resources. The sustainable approach recalls the importance of using all the renewable resources of nature revaluating the environmental characteristics of past solutions and recognizing that they have contributed to creating many sophisticated and environmentally friendly local cultures. This chapter presents a review of the high efficiency and complex features of greenery for the microclimatic regulation in urban green and in patios. The importance of hybridizing the logic of natural systems with that of technical systems in sustainable contemporary architecture for variable temperate climates is highlighted. As case study, results from research conducted in the city of Mendoza (Argentina) are presented. It is concluded that it is a significant cultural election to include greenery in our city lives. The closer we bring nature to our habitats, the better use we can make of it, gaining in physiological and psychological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari, P. T. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar Energy, 70, 295–310.

    Article  Google Scholar 

  • Al-Azzawi, S. H. A. (1984). A descriptive, analytical and comparative study of traditional courtyard houses and modern non-courtyard houses in Baghdad, in the context of urban design in the hot-dry climates of the sub-tropics. London: University College.

    Google Scholar 

  • Alchapar, N. L., Correa, E. N., & Cantón, M. A. (2014). Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. Energy and Buildings, 69, 22–32.

    Article  Google Scholar 

  • Aldawoud, A. (2008). Thermal performance of courtyard buildings. Energy and Buildings, 40, 906–910.

    Article  Google Scholar 

  • Balter, J., Ganem, C., & Discoli, C. (2016). On high-rise residential buildings in an oasis-city: Thermal and energy assessment of different envelope materiality above and below tree canopy. Energy and Buildings, 113, 61–73.

    Article  Google Scholar 

  • Bellomo, A. (2003). Pareti verdi. Roma: Sistemi Editoriali.

    Google Scholar 

  • Bormida, E. (1984). Mendoza, una ciudad oasis. Revista de la Universidad de Mendoza.

    Google Scholar 

  • British Museum. (2020). London.

    Google Scholar 

  • Cameron, R. W., Taylor, J., & Emmett, M. (2015). A Hedera green façade—energy performance and saving under different maritime-temperate, winter weather conditions. Building and Environment, 92, 111–121.

    Article  Google Scholar 

  • Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental biophysics (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Cantón, M. A., Cortegoso, J. L., & De Rosa, C. (1994). Solar permeability of urban trees in cities of western Argentina. Energy and Buildings, 20, 219–230.

    Article  Google Scholar 

  • Cantón, M. A., Cortegoso, J. L., Fernández Llano, J., & de Rosa, C. (2001). Environmental and energy impact of the urban forest in arid zone cities. Architectural Science Review, 44, 3–16.

    Article  Google Scholar 

  • Cantón, M. A., Ganem, C., Barea, G., & Fernández Llano, J. (2014). Courtyards as a passive strategy in semi dry areas. Renewable Energy, 69, 437–446.

    Article  Google Scholar 

  • Coch, H. (2003). La utilidad de los espacios inútiles. PhD Thesis. Barcelona: UPC.

    Google Scholar 

  • Coma, J., Pérez, G., de Gracia, A., Burés, S., Urrestarazu, M., & Cabeza, F. L. (2017). Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Building and Environment, 111, 228–237.

    Article  Google Scholar 

  • Correa, E. N., Ruiz, M. A., & Cantón, M. A. (2010). Morfología forestal y confort térmico en “ciudades oasis” de zonas áridas. Ambiente Construído, 10(4), 119–137.

    Article  Google Scholar 

  • Correa, E. N., Ruiz, M. A., Cantón, M. A., & Lesino, G. (2012). Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina. Building and Environment, 58, 219–230.

    Article  Google Scholar 

  • Correia Guedes, M., & Cantuária, G. (2017). The increasing demand on high rise buildings and their history. In A. Sayigh (Ed.), Sustainable high rise buildings in urban zones. Berlin: Springer.

    Google Scholar 

  • Coutts, A. M., White, E. C., Tapper, N. J., Beringer, J., & Livesley, S. J. (2016). Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology, 124(1), 55–68.

    Article  Google Scholar 

  • Dahanayake, K. W. D. K. C., & Chow, C. L. (2017). Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program. Energy and Buildings, 138, 47–59.

    Article  Google Scholar 

  • Dalley, S. (1993). Ancient Mesopotamian gardens and the identification of the Hanging Gardens of Babylon resolved. Garden History Journal, 21(1), 1–13.

    Article  Google Scholar 

  • Doick, K. J., & Hutchings, T. (2013). Air temperature regulation by urban trees and green infrastructure. London: Forestry Commission Ed.

    Google Scholar 

  • Foustalieraki, M., Assimakopoulos, M. N., Santamouris, M., & Pangalou, H. (2017). Energy performance of a medium scale green roof system installed on a commercial building using numerical and experimental data recorded during the cold period of the year. Energy and Buildings, 135, 33–38.

    Article  Google Scholar 

  • Ganem, C. (2006). Rehabilitación ambiental de la envolvente de viviendas. PhD Thesis. Barcelona: UPC.

    Google Scholar 

  • Georgi, N. J., & Zafiriadis, K. (2006). The impact of park trees on microclimate in urban areas. Urban Ecosystems, 9, 195–209.

    Article  Google Scholar 

  • Givoni, B. (1991). Comfort, climate analysis and building design guidelines. Energy and Buildings, 18, 11–23.

    Article  Google Scholar 

  • Guo-yu, Q., Hong-yong, L., Qing-tao, Z., Wan, C., Xiao-jian, L., & Xiang-ze, L. (2013). Review effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. Integrated Agriculture, 12(8), 1307A–1315A.

    Article  Google Scholar 

  • Hernández, A. (2003). GEOSOL: A computational tool for calculating solar coordinates and estimating hourly solar irradiation. Avances Energ Renov Medio Ambiente, 7(11), 19–24.

    Google Scholar 

  • Hinrichs, C. L. (1987). The architecture of the courtyard house as generated by passive solar energy and other factors. Manchester: Manchester University.

    Google Scholar 

  • Hoyano, A. (1988). Climatological uses of plants for solar control and the effects on the thermal environment of a building. Energy and Buildings, 11, 181–199.

    Article  Google Scholar 

  • McPherson, E. G. (1992). Accounting for benefits and costs of urban greenspace. Landscape and Urban Planning, 22, 41–51.

    Article  Google Scholar 

  • McPherson, E. G. (1994). Cooling urban heat islands with sustainable landscapes. In R. H. Platt et al. (Eds.), The ecological city: Preserving and restoring urban biodiversity. Amherst: University of Massachusetts Press.

    Google Scholar 

  • Meir, I. A., Pearlmutter, D., & Etzion, Y. (1995). On the microclimatic behaviour of two semi-enclosed attached courtyards in a hot dry region. Building and Environment, 30(4), 563–572.

    Article  Google Scholar 

  • Mesa, A., & Giusso, C. (2014). La urbanización del piedemonte andino del área metropolitana de Mendoza, argentina. Vulnerabilidad y segmentación social como ejes del conflicto. Revista Iberoamericana de Urbanismo, 11, 63–77.

    Google Scholar 

  • Mohsen, M. A. (1979). Solar radiation and courtyard house forms—I. A mathematical model. Building and Environment, 14(2), 89–106.

    Article  Google Scholar 

  • Muhaisen, A. S., & Gadi, M. B. (2006). Effect of courtyard proportions on solar heat gain and energy requirement in the temperate climate of Rome. Building and Environment, 41, 245–253.

    Article  Google Scholar 

  • Nangia, A. (2000). Architecture of India: Indus Valley Civilization. http://www.boloji.com/architecture/00002a.htm. India Nest.

  • Nikolopoulou, A. D. M. (2003). Vegetation in the urban environment: microclimatic analysis and benefits. Energy and Buildings, 35, 69–76.

    Article  Google Scholar 

  • Oke, T. R. (1990). Boundary layer climates (3rd ed.). London: Methuen.

    Google Scholar 

  • Pallasmaa, J. (1996). The eyes of the skin—architecture and the senses. London: Academy Ed.

    Google Scholar 

  • Philo of Byzantium. (2019). (V B.C.) De septem mundi miraculis. Retrieved August 29, 2019, from https://books.google.com.ar/books?id=2ZYAAAAcAAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false.

  • Ponte, R. (1998). Mendoza, Aquella ciudad de barro. Historia de una ciudad andina desde el siglo XVI hasta nuestros días (1st ed.). Buenos Aires: CONICET.

    Google Scholar 

  • Rizwan, A. M., Dennis, Y. C. Y., & Liu, C. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20, 120–128.

    Article  Google Scholar 

  • Ruiz, M. A., Sosa, M. B., Correa, E. N., & Cantón, M. A. (2015). Suitable configurations for forested urban canyons to mitigate the UHI in the city of Mendoza, Argentina. Urban Climate, 14, 197–121.

    Article  Google Scholar 

  • Santamouris, M. (2001). Energy and climate in the urban built environment. London: James & James.

    Google Scholar 

  • Servicio Meteorológico Nacional. (2020). Fuerza Aérea Argentina.

    Google Scholar 

  • Seyam, S. (2019). The impact of greenery systems on building energy: Systematic review. Building Engineering, 26, 100887.

    Article  Google Scholar 

  • Smardon, R. C. (1988). Perception and aesthetics of the urban environment: Review of the role of vegetation. Landscape and Urban Planning, 15(1–2), 85–106.

    Article  Google Scholar 

  • Solecki, W. D., Rosenzweig, C., Parshall, L., Pope, G., Clark, M., Cox, J., & Wiencke, M. (2005). Mitigation of the heat island effect in urban New Jersey. Environmental Hazards, 6, 39–49.

    Article  Google Scholar 

  • Taleghani, N. (2014). Dwelling on Courtyards. Exploring the energy efficiency and comfort potential of courtyards for dwellings in the Netherlands. Architecture and the Built Environment no. 18. Delft: Delft University of Technology.

    Google Scholar 

  • Taleghani, N. (2018). Outdoor thermal comfort by different heat mitigation strategies—A review. Renewable and Sustainable Energy Reviews, 81, 2011–2018.

    Article  Google Scholar 

  • Vox, G., Blanco, I., & Schettini, E. (2018). Green façades to control wall surface temperature in buildings. Building and Environment, 129, 154–166.

    Article  Google Scholar 

  • Zamani, Z., Heidari, S., & Hanachi, P. (2018). Reviewing the thermal and microclimatic function of courtyards. Renewable and Sustainable Energy Reviews, 93, 580–595.

    Article  Google Scholar 

  • Zhang, L., Deng, Z., Liang, L., Zhang, Y., Meng, Q., Wang, J., & Santamouris, M. (2019). Thermal behaviour of a vertical green facade and its impact on the indoor and outdoor thermal environment. Energy and Buildings, 204, 109502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Ganem Karlen Prof PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganem Karlen, C. (2022). From Vernacular to Sustainable Contemporary Architecture: Urban Green and Patios. In: Sayigh, A., Trombadore, A. (eds) The Importance of Greenery in Sustainable Buildings. Innovative Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-68556-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68556-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68555-3

  • Online ISBN: 978-3-030-68556-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics