Skip to main content

Effect of Particle-Surface-Modification on the Failure Behavior of Epoxy/Boehmite CFRPs

  • Chapter
  • First Online:
Acting Principles of Nano-Scaled Matrix Additives for Composite Structures

Part of the book series: Research Topics in Aerospace ((RTA))

  • 597 Accesses

Abstract

This chapter deals with the effect of particle content (up to 15 wt%) and particle surface modification on the mechanical properties (tensile properties and fracture toughness) of epoxy/boehmite composites. Furthermore, the failure behavior of epoxy/boehmite carbon fiber reinforced polymers (CFRPs) is investigated with compression after impact (CAI) tests at a constant fiber volume fraction of approximately 60 vol%. The CFRPs are fabricated by the Resin Transfer Moulding (RTM) method. To investigate the effect of particle-matrix-interaction, boehmite nanoparticles with different surface modifications (carboxylic acids and (3-aminopropyl)-triethoxysilane) are used. The epoxy/boehmite masterbatches used for the preparation of the specimens are characterized concerning particle sizes and surface loadings to ensure a comparability of the test results. The used masterbatches possess nearly the same size distributions and surface loadings. In addition viscosity measurements showed that the processability of the modified resins is strongly affected by modifying the surface of the boehmite particles. The mechanical tests show that the examined mechanical properties of the epoxy/boehmite composites as well as the failure behavior of the epoxy/boehmite CFRPs are mainly influenced by the filler content. The effect of particle surface modification is visible in particular for tensile modulus of the epoxy/boehmite composites. In addition, it is found that there is only a minor effect of surface modification on the compression strength after impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrate S (1998) Impact on composite structures. Cambridge University Press. https://doi.org/10.1017/CBO9780511574504

  2. Adachi T, Osaki M, Araki W, Kwon SC (2008) Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites. Acta Materialia 56(9):2101–2109. https://doi.org/10.1016/j.actamat.2008.01.002

  3. Arlt C (2011) Wirkungsweisen nanoskaliger Böhmite in einem Polymer und seinem Kohlenstofffaserverbund unter Druckbelastung. PhD thesis, Otto-von-Guericke Universität Magdeburg

    Google Scholar 

  4. Bittmann B, Englert M, Haupert F, Schlarb A (2009) Influence of the insertion of TiO\(_{2}\)-nanoparticles in epoxy resins on the curing behavior and the resulting mechanical properties. J Adv Mater: Int J Process Sci Characterization Appl Adv Mater 41:20–27

    CAS  Google Scholar 

  5. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. https://doi.org/10.1021/ja01269a023

  6. Buggy M, Bradley G, Sullivan A (2005) Polymer-filler interactions in kaolin/nylon 6,6 composites containing a silane coupling agent. Comp Part A: Appl Sci Manuf 36(4):437–442. https://doi.org/10.1016/j.compositesa.2004.10.002

  7. Čampelj S, Makovec D, Drofenik M (2009) Functionalization of magnetic nanoparticles with 3-aminopropyl silane. J Magnet Magnetic Mater 321(10):1346–1350. https://doi.org/10.1016/j.jmmm.2009.02.036

  8. Cartié DDR, Irving PE (2002) Effect of resin and fibre properties on impact and compression after impact performance of CFRP. Comp Part A: Appl Sci Manuf 33(4):483–493. https://doi.org/10.1016/S1359-835X(01)00141-5

  9. Chen Y, Zhou S, Yang H, Wu L (2005) Structure and properties of polyurethane/nanosilica composites. J Appl Polym Sci 95(5):1032–1039. https://doi.org/10.1002/app.21180

  10. Davies M, Moore DR (1991) Laboratory-scale screening of mechanical properties of resins and composites: relevance to composites for aerospace applications. Comp Sci Technol 40(2):131–146. https://doi.org/10.1016/0266-3538(91)90093-5

  11. Dekkers MEJ, Heikens D (1983) The effect of interfacial adhesion on the tensile behavior of polystyrene-glass-bead composites. J Appl Polym Sci 28(12):3809–3815. https://doi.org/10.1002/app.1983.070281220

  12. Dibenedetto AT, Wambach AD (1972) The fracture toughness of epoxy-glass bead composites. Int J Polymer Mater 1(2):159–173. https://doi.org/10.1080/00914037208082114

  13. Domun N, Hadavinia H, Zhang T, Liaghat G, Vahid S, Spacie C, Paton KR, Sainsbury T (2017) Improving the fracture toughness properties of epoxy using graphene nanoplatelets at low filler content. Nanocomposites 3(3):85–96. https://doi.org/10.1080/20550324.2017.1365414

  14. Dorey G (1975) Fracture and residual strength of carbon fibre composites subjected to impact loads. In: AGARD conference proceedings no 163—failure modes of composite materials with organic matrices and their consequence on dersign

    Google Scholar 

  15. Dorey G (1980) Relationship between impact resistance and fracture toughness in advanced composite materials. In: Proceedings of AGARD conference effect of size environment on composite materials. North Treaty Organization

    Google Scholar 

  16. Ellis B (ed) (1993) Chemistry and technology of epoxy resins. Springer, Netherlands. https://doi.org/10.1007/978-94-011-2932-9

  17. Evans RE, Masters JE (1987) A new generation of epoxy composites for primary structural applications: Mater Mech Toughened Comp 413–436

    Google Scholar 

  18. Exner W, Arlt C, Mahrholz T, Riedel U, Sinapius M (2012) Nanoparticles with various surface modifications as functionalized cross-linking agents for composite resin materials. Comp Sci Technol 72(10):1153–1159. https://doi.org/10.1016/j.compscitech.2012.03.024. Recent advancements in deformation & fracture of composites: experiment & analysis

  19. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Comp Part B: Eng 39(6):933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

  20. Garcia I, Zafeiropoulos NE, Janke A, Tercjak A, Eceiza A, Stamm M, Mondragon I (2007) Functionalization of iron oxide magnetic nanoparticles with poly(methyl methacrylate) brushes via grafting-from atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 45(5):925–932. https://doi.org/10.1002/pola.21854

  21. Ghaemy M, Sadjady S (2006) Kinetic analysis of curing behavior of diglycidyl ether of bisphenol A with imidazoles using differential scanning calorimetry techniques. J Appl Polym Sci 100(4):2634–2641. https://doi.org/10.1002/app.22716

  22. Hirschbuehler KR (1987) A comparison of several mechanical tests used to evaluate the toughness of composites. Toughened Comp 61–73 (1987)

    Google Scholar 

  23. Ji XL, Jing JK, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42(5):983–993. https://doi.org/10.1002/pen.11007

  24. Ji QL, Zhang MQ, Rong MZ, Wetzel B, Friedrich K (2004) Tribological properties of surface modified nano-alumina/epoxy composites. J Mater Sci 39(21):6487–6493. https://doi.org/10.1023/b:jmsc.0000044887.27884.1e

  25. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2):530–541. https://doi.org/10.1016/j.polymer.2006.11.038

  26. Jux M (2021) Einfluss der Grenzflächen nanoskaliger Matrixadditive auf das Schlagzähigkeitsverhalten von Faserverbunden. Dissertation, Technische Universität Braunschweig

    Google Scholar 

  27. Jux M, Finke B, Mahrholz T, Sinapius M, Kwade A, Schilde C (2017) Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties. J Nanoparticle Res 19(4):1–13. https://doi.org/10.1007/s11051-017-3831-9

  28. Kothmann MH, Ziadeh M, Bakis G, Rios de Anda A, Breu J, Altstädt V (2015) Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica. J Mat Sci 50(14):4845–4859. https://doi.org/10.1007/s10853-015-9028-7

  29. Kumar GG, Kim P, Kim AR, Nahm KS, Elizabeth RN (2009) Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes. Mater Chem Phys 115(1):40–46. https://doi.org/10.1016/j.matchemphys.2008.11.023

  30. Lazzeri A, Thio YS, Cohen RE (2003) Volume strain measurements on CaCO\(_{3}\)/Polypropylene particulate composites: The effect of particle size. J Appl Polym Sci 91(2):925–935. https://doi.org/10.1002/app.13268

  31. Liu D, Sun CT, Malvern LE (1986) Structural degradation of impacted graphite/epoxy laminates. The shock and vibration bulletin

    Google Scholar 

  32. Mahrholz T, Stängle J, Sinapius M (2009) Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes. Comp Part A: Appl Sci Manuf 40(3):235–243. https://doi.org/10.1016/j.compositesa.2008.11.008

  33. Michler GH (1992) Kunststoff-Mikromechanik: Morphologie, Deformations- und Bruchmechanismen. C. Hanser

    Google Scholar 

  34. Mishra S, Sonawane SH, Singh RP (2004) Studies on characterization of nano CaCO\(_{3}\) prepared by the in situ deposition technique and its application in PP-nano CaCO\(_{3}\) composites. J Polym Sci Part B: Polym Phys 43(1):107–113. https://doi.org/10.1002/polb.20296

    Article  CAS  Google Scholar 

  35. Moloney AC, Kausch HH, Kaiser T, Beer HR (1987) Parameters determining the strength and toughness of particulate filled epoxide resins. J Mater Sci 22(2):381–393. https://doi.org/10.1007/bf01160743

    Article  CAS  Google Scholar 

  36. Nadler M, Mahrholz T, Riedel U, Schilde C, Kwade A (2008) Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge. Carbon 46(11):1384–1392. https://doi.org/10.1016/j.carbon.2008.05.024

    Article  CAS  Google Scholar 

  37. Nakamura Y, Yamaguchi M, Okubo M, Matsumoto T (1992) Effect of particle size on mechanical properties of epoxy resin filled with angular-shaped silica. J Appl Polym Sci 44(1):151–158. https://doi.org/10.1002/app.1992.070440116

    Article  CAS  Google Scholar 

  38. Ochoa-Putman C, Vaidya UK (2011) Mechanisms of interfacial adhesion in metal-polymer composites—effect of chemical treatment. Comp Part A: Appl Sci Manuf 42(8):906–915. https://doi.org/10.1016/j.compositesa.2011.03.019

    Article  Google Scholar 

  39. Ooi SK, Cook WD, Simon GP, Such CH (2000) DSC studies of the curing mechanisms and kinetics of DGEBA using imidazole curing agents. Polymer 41(10):3639–3649. https://doi.org/10.1016/S0032-3861(99)00600-X

    Article  CAS  Google Scholar 

  40. Oppenheimer LE (1983) Interpretation of disk centrifuge data. J Colloid Interf Sci 92(2):350–357. https://doi.org/10.1016/0021-9797(83)90157-1

    Article  CAS  Google Scholar 

  41. Peter S (1949) Zur Theorie der Strukturviskosität. Kolloid-Zeitschrift 114(1):44–48. https://doi.org/10.1007/bf01515813

  42. Pukanszky B, VöRöS G (1993) Mechanism of interfacial interactions in particulate filled composites. Comp Interf 1(5):411–427. https://doi.org/10.1163/156855493X00266

    Article  CAS  Google Scholar 

  43. Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K (2004) Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polym Int 53(2):176–183. https://doi.org/10.1002/pi.1307

    Article  CAS  Google Scholar 

  44. Rudolph M, Bauer K, Peuker UA (2010) Phasenkontrast-Rasterkraftmikroskopie für die Charakterisierung der Verteilung von Nanopartikeln in Verbundwerkstoffen. Chemie Ingenieur Technik 82(12):2189–2195. https://doi.org/10.1002/cite.201000090

    Article  CAS  Google Scholar 

  45. Sahu S, Broutman LJ (1972) Mechanical properties of particulate composites. Polym Eng Sci 12(2):91–100. https://doi.org/10.1002/pen.760120204

    Article  CAS  Google Scholar 

  46. Shahid N, Villate RG, Barron AR (2005) Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Comp Sci Technol 65(14):2250–2258. https://doi.org/10.1016/j.compscitech.2005.04.001

    Article  CAS  Google Scholar 

  47. Shukla DK, Kasisomayajula SV, Parameswaran V (2008) Epoxy composites using functionalized alumina platelets as reinforcements. Comp Sci Technol 68(14):3055–3063. https://doi.org/10.1016/j.compscitech.2008.06.025

    Article  CAS  Google Scholar 

  48. Singh RP, Zhang M, Chan D (2002) Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. J Mater Sci 37(4):781–788. https://doi.org/10.1023/a:1013844015493

    Article  CAS  Google Scholar 

  49. Sohi MM, Hahn HT, Williams JG (1987) The effect of resin toughness and modulus on compressive failure modes of Quasi-Isotropic Graphite/Epoxy laminates. Toughened Comp 37–60

    Google Scholar 

  50. Spanoudakis J, Young RJ (1984) Crack propagation in a glass particle-filled epoxy resin. J Mater Sci 19(2):487–496. https://doi.org/10.1007/bf02403235

    Article  CAS  Google Scholar 

  51. Tjong SC, Xu SA (2001) Ternary polymer composites: PA6,6/maleated SEBS/glass beads. J Appl Polym Sci 81(13):3231–3237. https://doi.org/10.1002/app.1777

    Article  CAS  Google Scholar 

  52. Vrancken KC, Van Der Voort P, Possemiers K, Vansant EF (1995) Surface and structural properties of Silica gel in the modification with \(\gamma \)-Aminopropyltriethoxysilane. J Colloid Interf Sci 174(1):86–91. https://doi.org/10.1006/jcis.1995.1367

    Article  CAS  Google Scholar 

  53. Wacharawichanant S, Thongyai S, Phutthaphan A, Eiamsam-ang C (2008) Effect of particle sizes of zinc oxide on mechanical, thermal and morphological properties of polyoxymethylene/zinc oxide nanocomposites. Polym Test 27(8):971–976. https://doi.org/10.1016/j.polymertesting.2008.08.012

    Article  CAS  Google Scholar 

  54. Wang M, Berry C, Braden M, Bonfield W (1998) Young’s and shear moduli of ceramic particle filled polyethylene. J Mater Sci: Mater Med 9(11):621–624. https://doi.org/10.1023/a:1008975323486

    Article  CAS  Google Scholar 

  55. Wang K, Wu J, Ye L, Zeng H (2003) Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites. Comp Part A: Appl Sci Manuf 34(12):1199–1205. https://doi.org/10.1016/j.compositesa.2003.07.004

    Article  CAS  Google Scholar 

  56. Wetzel B (2006) Mechanische Eigenschaften von Nanoverbundwerkstoffen aus Epoxydharz und keramischen Nanopartikeln. PhD thesis, Technische Universität Kaiserslautern

    Google Scholar 

  57. Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Epoxy nanocomposites—fracture and toughening mechanisms. Eng Fract Mech 73(16):2375–2398. https://doi.org/10.1016/j.engfracmech.2006.05.018

    Article  Google Scholar 

  58. Williams JG, Rhodes MD (1982) Effect of resin on impact damage tolerance of graphite/epoxy laminates. In: Composite materials: testing and design, 6th conference, pp 450–480

    Google Scholar 

  59. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Comp Sci Technol 65(3–4):635–645. https://doi.org/10.1016/j.compscitech.2004.09.004

    Article  CAS  Google Scholar 

  60. Zhang Q, Tian M, Wu Y, Lin G, Zhang L (2004) Effect of particle size on the properties of Mg(OH)\(_{2}\)-filled rubber composites. J Appl Polym Sci 94(6):2341–2346. https://doi.org/10.1002/app.21037

    Article  CAS  Google Scholar 

  61. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia 54(7):1833–1842. https://doi.org/10.1016/j.actamat.2005.12.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Jux .

Editor information

Editors and Affiliations

Ethics declarations

This chapter is based on Jux’s PhD thesis [26].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jux, M., Sinapius, J.M. (2021). Effect of Particle-Surface-Modification on the Failure Behavior of Epoxy/Boehmite CFRPs. In: Sinapius, M., Ziegmann, G. (eds) Acting Principles of Nano-Scaled Matrix Additives for Composite Structures. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-030-68523-2_18

Download citation

Publish with us

Policies and ethics