Skip to main content

Let’s Tessellate: Tiling for Security Against Advanced Probe and Fault Adversaries

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12609))

Abstract

The wire probe-and-fault models are currently the most used models to provide arguments for side-channel and fault security. However, several practical attacks are not yet covered by these models. This work extends the wire fault model to include more advanced faults such as area faults and permanent faults. Moreover, we show the tile probe-and-fault adversary model from CRYPTO 2018’s CAPA envelops the extended wire fault model along with known extensions to the probing model such as glitches, transitions, and couplings. In other words, tiled (tessellated ) designs offer security guarantees even against advanced probe and fault adversaries.

As tiled models use multi-party computation techniques, countermeasures are typically expensive for software/hardware. This work investigates a tiled countermeasure based on the ISW methodology which is shown to perform significantly better than CAPA for practical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    On hardware this functionality is replaced by a specialised mechanism such as a cascading gadget from the work by Ishai et al. [18].

  2. 2.

    A connection between the security of parallel operations and the probing security of sequential operations is discussed in the work by Barthe et al. [2].

  3. 3.

    The \(d+1\) RNGs can be replaced by a \(d^{th}\)-order tiled secure RNG if this is available.

References

  1. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 116–129. ACM Press, October 2016. https://doi.org/10.1145/2976749.2978427

  2. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.: Parallel implementations of masking schemes and the bounded moment leakage model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_19

    Chapter  Google Scholar 

  3. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_22

    Chapter  Google Scholar 

  4. Belaïd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud, D.: Private multiplication over finite fields. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 397–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_14

    Chapter  Google Scholar 

  5. Belaïd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing security with the least refreshing. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 343–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_12

    Chapter  Google Scholar 

  6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  7. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

    Article  MathSciNet  MATH  Google Scholar 

  8. Cassiers, G., Standaert, F.X.: Towards globally optimized masking: from low randomness to low noise rate. IACR TCHES 2019(2), 162–198 (2019). https://doi.org/10.13154/tches.v2019.i2.162-198, https://tches.iacr.org/index.php/TCHES/article/view/7389

  9. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_13

    Chapter  Google Scholar 

  10. Coron, J.-S.: High-order conversion from boolean to arithmetic masking. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_5

    Chapter  Google Scholar 

  11. Dhooghe, S., Nikova, S.: Let’s tessellate: tiling for security against advanced probe and fault adversaries. IACR Cryptol. ePrint Arch. 2020, 1146 (2020). https://eprint.iacr.org/2020/1146

  12. Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove security against combined attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 35–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_3

    Chapter  Google Scholar 

  13. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR TCHES 2018(3), 547–572 (2018). https://doi.org/10.13154/tches.v2018.i3.547-572, https://tches.iacr.org/index.php/TCHES/article/view/7286

  14. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_24

    Chapter  Google Scholar 

  15. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.X.: Composable masking schemes in the presence of physical defaults & the robust probing model. IACR TCHES 2018(3), 89–120 (2018). https://doi.org/10.13154/tches.v2018.i3.89-120, https://tches.iacr.org/index.php/TCHES/article/view/7270

  16. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty ciphertexts only. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20, 2013, pp. 108–118 (2013). https://doi.org/10.1109/FDTC.2013.18, https://doi.org/10.1109/FDTC.2013.18

  17. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order. In: Proceedings of the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016 Vienna, Austria, October 2016, p. 3 (2016). https://doi.org/10.1145/2996366.2996426

  18. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_19

    Chapter  MATH  Google Scholar 

  19. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  20. Aumann, Y., Rabin, M.O.: Information theoretically secure communication in the limited storage space model. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 65–79. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_5

    Chapter  Google Scholar 

  21. Moos, T., Moradi, A., Schneider, T., Standaert, F.X.: Glitch-resistant masking revisited. IACR TCHES 2019(2), 256–292 (2019). https://doi.org/10.13154/tches.v2019.i2.256-292, https://tches.iacr.org/index.php/TCHES/article/view/7392

  22. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_5

    Chapter  Google Scholar 

  23. Reparaz, O., De Meyer, L., Bilgin, B., Arribas, V., Nikova, S., Nikov, V., Smart, N.: CAPA: the spirit of beaver against physical attacks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 121–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_5

    Chapter  Google Scholar 

  24. Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient \(GF(2^8)\) inversion circuit based on redundant GF arithmetic and its application to AES design. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 63–80. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_4

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

We thank François-Xavier Standaert and Gaëtan Cassiers for the interesting discussions. Siemen Dhooghe is supported by a PhD Fellowship from the Research Foundation – Flanders (FWO). Svetla Nikova was partially supported by the Bulgarian National Science Fund, Contract No. 12/8

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siemen Dhooghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhooghe, S., Nikova, S. (2021). Let’s Tessellate: Tiling for Security Against Advanced Probe and Fault Adversaries. In: Liardet, PY., Mentens, N. (eds) Smart Card Research and Advanced Applications. CARDIS 2020. Lecture Notes in Computer Science(), vol 12609. Springer, Cham. https://doi.org/10.1007/978-3-030-68487-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68487-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68486-0

  • Online ISBN: 978-3-030-68487-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics