Skip to main content

Hydrothermal Synthesis of Metal Oxide Composite Cathode Materials for High Energy Application

  • Chapter
  • First Online:
Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Abstract

Globally, a number of electronic devices have been developed to streamline the day-to-day life, but there is still a challenge for high energy storage and excellent stability. This chapter discusses the advantages and some faced challenges for the hydrothermal synthesis of metal oxide composites for high energy applications. Hydrothermal synthesis method is one of the commonest and relatively achievable method for researchers. The chapter highlights some of the parameters used for the synthesis of metal oxide nanoparticles in both a batch and a flow reaction system for cathode materials. The hydrothermal method is used in heteroatomic doping for improvement of the material properties. The chapter looks at the effect of solvent selection and performance properties at different operation conditions. The chapter includes a practical experiment and results in a discussion for the NaFe2O3-GO which was produced by batch hydrothermal method by the authors. The material was characterized by FESEM/EDX, XRD, and electrochemical testing of the material which resulted in the performance of the discharge capacity approximated to be 720 mA h/g.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nankya R, Opar DO, Kim M, Paek S, Jung H (2020) Synergetic effect of nitrogen and sulfur co-doping in mesoporous graphene for enhanced energy storage properties in supercapacitors and lithium-ion batteries. J Solid State Chem 289:121451. https://doi.org/10.1016/j.jssc.2020.121451

    Article  CAS  Google Scholar 

  2. Fang H-S, Wang Z-X, Li X-H, Guo H-J, Peng W-J (2006) Low temperature synthesis of LiNi0.5Mn1.5O4 spinel. Mater Lett 60:1273–1275

    Article  CAS  Google Scholar 

  3. Zhang B, Wang Z–, Guo H– (2007) Effect of annealing treatment on electrochemical property of LiNi0.5Mn1.5O4 spinel. Trans Nonferr Met Soc 17:287–290

    Article  CAS  Google Scholar 

  4. Feng J, Huang Z, Guo C, Chernova NA, Upreti S, Whittingham MS (2013) An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. ACS Appl Mater Interfaces 5:10227–10232

    Article  CAS  Google Scholar 

  5. Gu Y-J et al (2014) Characterization and electrochemical properties of LiNi0.5Mn1.5O4 prepared by a carbonate co-precipitation method. Int J Electrochem Sci 9:7712–7724

    Google Scholar 

  6. Byrappa K (2005) Hydrothermal processing. In: Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, Inc., New York, NY, pp 1–14

    Google Scholar 

  7. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology. Noyes Publications, Park Ridge, NJ

    Google Scholar 

  8. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials (Basel) 3(7):3794–3817. https://doi.org/10.3390/ma3073794

    Article  CAS  Google Scholar 

  9. Sonawane GH, Patil SP, Sonawane SH (2018) Nanocomposites and its applications. In: Applications of nanomaterials. Elesvier, Philadelphia, PA, pp 1–22

    Google Scholar 

  10. Hakuta Y, Haganuma T, Sue K, Adschiri T, Arai K (2003) Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water. Mater Res Bull 38:1257–1265

    Article  CAS  Google Scholar 

  11. Byrappa K, Yoshimura M (2013) Handbook of hydrothermal technology, 2nd edn. Elsevier Inc, Amsterdam

    Google Scholar 

  12. Wu X et al (2020) Template-assisted synthesis of LiNi0.8Co0.15Al0.05O2 hollow nanospheres as cathode material for lithium ion batteries. J Mater Sci 55(22):9493–9503. https://doi.org/10.1007/s10853-020-04627-1

    Article  CAS  Google Scholar 

  13. Nostrand V (2006) Hydrothermal processing. In: Science encyclopedia. John Wiley and Sons, New York, NY

    Google Scholar 

  14. Cheng J, Li X, Wang Z, Guo H (2016) Hydrothermal synthesis of LiNi0.5Mn1.5O4 sphere and its performance as high-voltage cathode material for lithium ion batteries. Ceram Int 42:3715–3719. https://doi.org/10.1016/j.ceramint.2015.11.031

    Article  CAS  Google Scholar 

  15. Yuan M et al (2019) Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance. Electrochim Acta 323(134822):2934–2939. https://doi.org/10.1039/c2cp23363k.

    Article  Google Scholar 

  16. Park SK et al (2014) In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim Acta 120:452–459. https://doi.org/10.1016/j.electacta.2013.12.018

    Article  CAS  Google Scholar 

  17. Nethravathi C, Viswanath B, Michael J, Rajamath M (2012) Hydrothermal synthesis of a monoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon N Y 50(13):4839–4846. https://doi.org/10.1016/j.carbon.2012.06.010.

    Article  CAS  Google Scholar 

  18. Yuan LX et al (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284. https://doi.org/10.1039/c0ee00029a.

    Article  CAS  Google Scholar 

  19. Pan XL, Xu CY, Hong D, Fang HT, Zhen L (2013) Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode. Electrochim Acta 87:303–308. https://doi.org/10.1016/j.electacta.2012.09.106

    Article  CAS  Google Scholar 

  20. Qin X, Wang X, Xiang H, Xie J, Li J, Zhou Y (2010) Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J Phys Chem C 114(39):16806–16812. https://doi.org/10.1021/jp104466e

    Article  CAS  Google Scholar 

  21. Meligrana G, Gerbaldi C, Tuel A, Bodoardo S, Penazzi N (2006) Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J Power Sources 160(1):516–522. https://doi.org/10.1016/j.jpowsour.2005.12.067

    Article  CAS  Google Scholar 

  22. Jiang H et al (2020) Facile hydrothermal synthesis and electrochemical properties of (NH4)2V10O25·8H2O nanobelts for high-performance aqueous zinc ion batteries. Electrochim Acta 332:135506. https://doi.org/10.1016/j.electacta.2019.135506.

    Article  CAS  Google Scholar 

  23. Pu NW et al (2018) Hydrothermal synthesis of N-doped graphene/Fe2O3 nanocomposite for supercapacitors. Int J Electrochem Sci 13(7):6812–6823. https://doi.org/10.20964/2018.07.16

    Article  CAS  Google Scholar 

  24. Katkar PK, Marje SJ, Pujari SS, Khalate SA, Deshmukh PR, Patil UM (2020) Single-pot hydrothermal synthesis of manganese phosphate microrods as a cathode material for highly stable flexible solid-state symmetric supercapacitors. Synth Met 267:116446. https://doi.org/10.1016/j.synthmet.2020.116446

    Article  CAS  Google Scholar 

  25. Gao F, Qin SH, Zang YH, Gu JF, Qu JY (2020) Highly efficient formation of Mn3O4-graphene oxide hybrid aerogels for use as the cathode material of high performance lithium ion batteries. Xinxing Tan Cailiao/New Carbon Mater 35(2):121–130. https://doi.org/10.1016/S1872-5805(20)60479-6

    Article  Google Scholar 

  26. Sun X et al (2009) Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem C 113(36):16002–16008. https://doi.org/10.1021/jp9038682

    Article  CAS  Google Scholar 

  27. Du P, Li T, Jiang X, Wang D, Zheng X (2020) Improving the electrochemical performance of Na3V2O2(PO4)2F cathode by using a defect-containing TiO2-x coating for sodium ion batteries. J Alloys Compd 814:1–10. https://doi.org/10.1016/j.jallcom.2019.152270

    Article  CAS  Google Scholar 

  28. Kumar PR, Jung YH, Lim CH, Kim DK (2015) Na3V2O2x(PO4)2F3-2x: a stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density. J Mater Chem A 3(12):6271–6275. https://doi.org/10.1039/c5ta00980d

    Article  CAS  Google Scholar 

  29. Yahya R, Hayashi H, Nagase T, Ebina T, Onodera Y, Saitoh N (2001) Hydrothermal synthesis of potassium hexatitanates under subcritical and supercritical water conditions and its application in photocatalysts. Chem Mater 13:842–847

    Article  CAS  Google Scholar 

  30. Assaaoudi H, Fang Z, Butler IS, Kozinski JA (2008) Synthesis of erbium hydroxide microflowers and nanostructures in subcritical water. Nanotechnology 19:185606

    Article  CAS  Google Scholar 

  31. Sato T et al (2008) Hydrothermal synthesis of CuAlO2 with the delafossite structure in supercritical water. J Supercrit Fluids 46:173–177

    Article  CAS  Google Scholar 

  32. Yoon M, In JH, Lee HC, Lee C (2006) Comparison of YAG:Eu phosphor synthesized by supercritical water and solid-state methods in a batch reactor. Korean J Chem Eng 23:842–846

    Article  CAS  Google Scholar 

  33. Sue K et al (2006) Size-controlled synthesis of metal oxide nanoparticles with a flow-through supercritical water method. Green Chem 8:634–638

    Article  CAS  Google Scholar 

  34. Zhao D, Han E, Wu X, Guan H (2006) Hydrothermal synthesis of ceria nanoparticles supported on carbon nanotubes in supercritical water. Mater Lett 60:3544–3547

    Article  CAS  Google Scholar 

  35. Takesue M, Shimoyama K, Murakamia S, Hakutac Y, Hayashic H, Smith RL Jr (2007) Phase formation of Mn-doped zinc silicate in water at high-temperatures and high-pressures. J Supercrit Fluids 43:214–221

    Article  CAS  Google Scholar 

  36. Takesue M, Suino A, Hakuta Y, Hayashi H, Smith RL Jr (2010) Crystalisation trigger of Mn-doped zinc silicate in supercritical water via Zn, Mn, Si sources and complex agent ethylenediamine tetraaceticacid. Master Chem Phys 121:330–334

    Article  CAS  Google Scholar 

  37. Zhang Y et al (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synth Met 162(13–14):1315–1326. https://doi.org/10.1016/j.synthmet.2012.04.025

    Article  CAS  Google Scholar 

  38. Wang X et al (2014) Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries. J Power Sources 256:361. https://doi.org/10.1016/j.jpowsour.2014.01.093.

    Article  CAS  Google Scholar 

  39. Jibrael RI et al (2015) Graphene-based polymer nanocomposites. Carbon N Y 6(1):1–4. https://doi.org/10.4172/2157-7439.1000253.

    Article  Google Scholar 

  40. Xu H et al (2015) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 2(032146):200–247. https://doi.org/10.1016/j.jpowsour.2013.03.160

    Article  CAS  Google Scholar 

  41. Wang Y, Wei H, Lu Y, Wei S, Wujcik EK, Guo Z (2015) Multifunctional carbon nanostructures for advanced energy storage applications. Nanomaterials 5:755–777. https://doi.org/10.3390/nano5020755

    Article  CAS  Google Scholar 

  42. Anikeev VI (2010) Hydrothermal synthesis of metal oxide nanoparticles. Materials (Basel) 3(7):3794–3817. https://doi.org/10.3390/ma3073794

    Article  CAS  Google Scholar 

  43. Lee JH, Ham JY (2006) Synthesis of manganese oxide particles in supercritical water. Korean J Chem Eng 23:714–719

    Article  CAS  Google Scholar 

  44. Reverón H, Aymonier HC, Loppinet-Serani A, Elissalde C, Maglione M, Cansell F (2005) Single-step synthesis of well-crystallized and pure barium titanate nanoparticles in supercritical fluids. Nanotechnology 16:1137–1143

    Article  CAS  Google Scholar 

  45. Elissalde C, Reverón H, Aymonier C, Michau D, Cansell F, Maglione M (2005) The ferroelectric transition temperature as an intrinsic probe for sinterednanocrystalline BaTiO3 synthesized under supercritical conditions. Nanotechnology 16:797–802

    Article  CAS  Google Scholar 

  46. Reverón H, Elissalde C, Aymonier C, Bidault O, Maglione M, Cansell F (2005) Supercritical fluid route for synthesizing crystalline barium strontium titanate nanoparticles. J Nanosci Nanotechnol 5:1741–1745

    Article  CAS  Google Scholar 

  47. Cote LJ, Teja AS, Wilkinson AP, Zhang Z (2003) Continuous hydrothermal synthesis of CoFe2O4 nanoparticles. Fluid Phase Equilib 210:307–317

    Article  CAS  Google Scholar 

  48. Lu J et al (2008) Preparation of Ca0.8Sr0.2Ti1-xFexO3-x (x = 0.1–0.3) nanoparticles using a flow supercritical reaction system. J Supercrit Fluids 46:77–82

    Article  CAS  Google Scholar 

  49. In JH, Lee HC, Yoon MJ, Lee KK, Lee JW, Lee CH (2007) Syntesis of nano-sized YAG: Eu3+ phosphor in continuous supercritical water system. J Supercrit Fluids 40:389–396

    Article  CAS  Google Scholar 

  50. Sato T et al (2008) Effect of pH on hydrothermal synthesis of gamma-Al2O3 nanoparticles at 673 K. Chem Lett 37:242–243

    Article  CAS  Google Scholar 

  51. Sato T et al (2008) Rapid and continuous production of ferrite nanoparticles by hydrothermal synthesis at 673 K and 30 MPa. Ind Eng Chem Res 47:1855–1860

    Article  CAS  Google Scholar 

  52. Aimable A, Xin B, Millot N, Aymes D (2008) Continuous hydrothermal synthesis of nanometric BaZrO3 in supercritical water. J Solid State Chem 181:183–189

    Article  CAS  Google Scholar 

  53. Boldrin P et al (2007) Direct syntheses of nanosized NiCo2O4 spinel and related compounds via continuous hydrothermal synthesis methods. Ind Eng Chem Res 46:4830–4838

    Article  CAS  Google Scholar 

  54. Cabanas A et al (2007) Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water-ethanol mixtures. J Supercrit Fluids 40:284–292

    Article  CAS  Google Scholar 

  55. Kim J, Myeong W, Ihm SK (2007) Characteristics in oxygen strage capacity of ceria-zirconia mixed oxides prepared by continuous hydrothermal synthesis in supercritical water. Appl Catal B Environ 71:57–63

    Article  CAS  Google Scholar 

  56. Takeuchi ES, Leising RA (1996) Process for making a metal oxide composite cathode material for high energy density batteries

    Google Scholar 

  57. Yang X et al (2018) Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode. J Mater Chem A 6(33):16149–16163

    Article  CAS  Google Scholar 

  58. Chen T et al (2018) The effect of gradient boracic polyaniondoping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J Power Sources 374:1–11

    Article  CAS  Google Scholar 

  59. Liu B et al (2018) Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2. J Alloys Compd 739:961–971

    Article  CAS  Google Scholar 

  60. Liu W et al (2018) Effect of voltage range and BiPO4 coating on the electrochemical properties of LiNi0.8Co0.15Al0.05O2. Chemistry Select 3(26):7660–7666

    CAS  Google Scholar 

  61. Liu Z, Wang Z, Lu TZ, Dai PP, Gao P, Zhu YM (2018) Modification of LiNi0.8Co0.15Al0.05O2 using nanoscale carbon coating. J Alloys Compd 763:701–710

    Article  CAS  Google Scholar 

  62. Chen J et al (2019) LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating. Electrochim Acta 312:179–187

    Article  CAS  Google Scholar 

  63. Kong LB et al (2014) The specific capacitance of sol-gel synthesized spinel MnCo2O4 in an alkaline electrolyte. Electrochim Acta 115:22–27

    Article  CAS  Google Scholar 

  64. Shanbhag D, Bindu K, Aarathy AR, Ramesh M, Sreejesh M, Nagaraja HS (2017) Hydrothermally synthesized reduced graphene oxide and Sn doped manganese dioxide nanocomposites for supercapacitors and dopamine sensors. Mater Today 4:66–74. https://doi.org/10.1016/j.mtener.2017.03.006

    Article  Google Scholar 

  65. Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  Google Scholar 

  66. Li L, Guo Z, Du A, Liu H (2012) Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties. J Mater Chem 22(8):3600–3605

    Article  CAS  Google Scholar 

  67. Wang J-G, Jin D, Zhou R, Li X, Liu X-r, Shen C, Xie K, Li B, Kang F, Wei B (2016) Highly flexible graphene/Mn3O4 nanocomposite nembrane as advanced anodes for Li-Ion batteries. ACS Nano 10(6):6227–6234

    Article  CAS  Google Scholar 

  68. Yu C-Y et al (2015) NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ Sci 8:2019–2026

    Article  CAS  Google Scholar 

  69. Li W, Zhang F, Xiang X, Zhang X (2018) Nickel-substituted copper hexacyanoferrate as a superior cathode for aqueous sodium-ion batteries. Chem Electro Chem 5:350–354

    CAS  Google Scholar 

  70. Li X et al (2018) Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg Chem Front 5(1):11–28

    Article  CAS  Google Scholar 

  71. Zhang H et al (2016) One-step synthesis of nickel cobalt sulphides particles: tuning the composition for high performance supercapacitors. RSC Adv 6(64):58916–58924

    Article  CAS  Google Scholar 

  72. Hou P et al (2017) Stabilizing the electrode/electrolyte interface of LiNi0.8Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29643–29653

    Article  CAS  Google Scholar 

  73. Kim Y, Kim D (2012) Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method. ACS Appl Mater Interfaces 4(2):586–589

    Article  CAS  Google Scholar 

  74. Natarajan S et al (2018) Infrared spectroscopy signatures of aluminum segregation and partial oxygen substitution by sulfur in LiNi0.8Co0.15Al0.05O2. ACS Appl Energy Mater 1(6):2536–2545

    Article  CAS  Google Scholar 

  75. Mukherjee P et al (2018) Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.05O2 (NCA) under high voltage and elevated temperature conditions. Chem Mater 23:8431–8445

    Article  CAS  Google Scholar 

  76. Zheng JC, Yang Z, He ZJ, Tong H, Yu WJ, Zhang JF (2018) In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy 58:613–621

    Google Scholar 

  77. Loppinet-Serani A, Aymonier C, Cansell F (2010) Supercritical water for environmental technologies. J Chem Technol Biotechnol 85(5):583–589

    Article  CAS  Google Scholar 

  78. Goh GKL, Haile SM, Levi CG, Lange FF (2002) Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate. J Mater Res 17:3168–3174

    Article  CAS  Google Scholar 

  79. Takesue M, Suino A, Hakuta Y, Hayashi H, Smith R (2008) Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in super critical water. J Solid State Chem 181:1307–1313

    Article  CAS  Google Scholar 

  80. Kigozi M et al (2020) Synthesis and characterization of graphene oxide from locally mined graphite flakes and its supercapacitor applications. Results Mater 7:100113. https://doi.org/10.1016/j.rinma.2020.100113

    Article  Google Scholar 

  81. Geim A, Novoselov K (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  82. Feng Y, Huang S, Kang K, Al E (2011) Preparation and characterization of graphene and few-layer graphene. New Carbon Mater 26(1):26–30

    CAS  Google Scholar 

  83. McAllister M et al (2007) Single sheet functionalized graphene by graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  84. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  CAS  Google Scholar 

  85. Chen W, Yan L, Bangal P (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon N Y 48:1146–1152

    Article  CAS  Google Scholar 

  86. Dreyer D, Park S, Bielawaski C, Ruoff R (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  87. Ekimov E et al (2004) Superconductivity in diamond. Nature 428:542–545

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses Kigozi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kigozi, M., Ezealigo, B.N., Onwualu, A.P., Dzade, N.Y. (2021). Hydrothermal Synthesis of Metal Oxide Composite Cathode Materials for High Energy Application. In: Ezema, F.I., Lokhande, C.D., Jose, R. (eds) Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-68462-4_19

Download citation

Publish with us

Policies and ethics