Skip to main content

Genetic Algorithms

  • Chapter
  • First Online:
Artificial Intelligence for Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 312))

Abstract

Genetic algorithm, a very simple but very powerful stochastic global optimizer, has been applied to many fields in search and optimization. This capture study aims to provide overall information for a genetic algorithms user to choose the most appropriate scheme for his or her specific application problem for his or her specific application problem. In this section, we mainly address three well-known genetic algorithms, namely, artificial bee colony, particle swarm optimization, and differential evolution. The evolution mechanism, current research status, and applications of different genetic algorithm have been investigated in detail for the users to choose the most appropriate strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland, J. (1975). Adaptation in natural and artificial systems (p. 100). Ann Arbor: University of Michigan Press.

    Google Scholar 

  2. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, (Vol. 200, pp. 1--10).

    Google Scholar 

  3. Gao, W.-F., & Liu, S.-Y. (2012). A modified artificial bee colony algorithm. Computers & Operations Research, 39, 687–697.

    Article  Google Scholar 

  4. Khader, A. T., Al-betar, M. A., & Mohammed, A. A. (2013). Artificial bee colony algorithm, its variants and applications: A survey. Journal of Theoretical & Applied Information Technology, 47(2).

    Google Scholar 

  5. Toktas, A., Ustun, D., Yigit, E., Sabanci, K., & Tekbas, M. (2018). Optimally synthesizing multilayer radar absorbing material (Ram) using artificial bee colony algorithm. In 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 24–27 Sept 2018 (pp. 237–241).

    Google Scholar 

  6. Sonmez, M. (2011). Artificial bee colony algorithm for optimization of truss structures. Applied Soft Computing, 11, 2406–2418.

    Article  Google Scholar 

  7. Gao, W., & Liu, S. (2011). Improved artificial bee colony algorithm for global optimization. Information Processing Letters, 111, 871–882.

    Article  Google Scholar 

  8. Zhu, G., & Kwong, S. (2010). Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 217, 3166–3173.

    Article  Google Scholar 

  9. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN‘95—International Conference on Neural Networks, 27 Nov–1 Dec 1995 (Vol. 4, pp. 1942–1948).

    Google Scholar 

  10. Wang, Y., Lv, J., Zhu, L., & Ma, Y. (2010). Crystal structure prediction via particle-swarm optimization. Physical Review B, 82, 094116.

    Article  Google Scholar 

  11. Li, S., Ye, X., Liu, T., Gao, T., Ma, S., & Ao, B. (2018). New insight into the structure of Pugao3 from ab initio particle-swarm optimization methodology. Journal of Materials Chemistry A, 6, 22798–22808.

    Article  CAS  Google Scholar 

  12. Ozcan, E., & Mohan, C. K. (1999). Particle swarm optimization: Surfing the waves. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 6–9 July 1999 (Vol. 3, pp. 1939–1944).

    Chapter  Google Scholar 

  13. Clerc, M., & Kennedy, J. (2002). The particle swarm—Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.

    Article  Google Scholar 

  14. Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, 85, 317–325.

    Article  Google Scholar 

  15. Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), 16–19 July 2000 (Vol. 1, pp. 84–88).

    Chapter  Google Scholar 

  16. Angeline, P. J. (1998). Using selection to improve particle swarm optimization. In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360) (pp. 84–89). New York: IEEE.

    Chapter  Google Scholar 

  17. Løvbjerg, M., Rasmussen, T. K., & Krink, T. (2001). Hybrid particle swarm optimiser with breeding and subpopulations. In Proceedings of the genetic and evolutionary computation conference (Vol. 2001, pp. 469–476). San Francisco, USA.

    Google Scholar 

  18. Wang, Y., Lv, J., Zhu, L., & Ma, Y. (2012). Calypso: A method for crystal structure prediction. Computer Physics Communications, 183, 2063–2070.

    Article  CAS  Google Scholar 

  19. Glass, C. W., Oganov, A. R., & Hansen, N. (2006). Uspex—Evolutionary crystal structure prediction. Computer Physics Communications, 175, 713–720.

    Article  CAS  Google Scholar 

  20. Das, S., & Suganthan, P. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15, 4–31.

    Article  Google Scholar 

  21. Gämperle, R., Müller, S. D., & Koumoutsakos, P. (2002). A parameter study for differential evolution. Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, 10, 293–298.

    Google Scholar 

  22. Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    Article  Google Scholar 

  23. Qing, A. (2009). Chapter 2. Fundamentals of differential evolution. In Differential evolution: Fundamentals and applications in electrical engineering (pp. 41–60). Hoboken, NJ: Wiley. https://doi.org/10.1002/9780470823941.

    Chapter  Google Scholar 

  24. Zelinka, I. (2005). Investigation on evolutionary deterministic chaos control–extended study. Heuristica, 1000, 30.

    Google Scholar 

  25. Ali, M. M., Smith, R., & Hobday, S. (2006). The structure of atomic and molecular clusters, optimised using classical potentials. Computer Physics Communications, 175, 451–464.

    Article  CAS  Google Scholar 

  26. Storn, R., & Price, K. (1995). Differential evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report Tr-95-012. International Computer Science, Berkeley, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengfeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, S., Li, D. (2021). Genetic Algorithms. In: Cheng, Y., Wang, T., Zhang, G. (eds) Artificial Intelligence for Materials Science. Springer Series in Materials Science, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-68310-8_5

Download citation

Publish with us

Policies and ethics