Skip to main content

State Complexity of the Set of Synchronizing Words for Circular Automata and Automata over Binary Alphabets

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12638))

Abstract

Most slowly synchronizing automata over binary alphabets are circular, i.e., containing a letter permuting the states in a single cycle, and their set of synchronizing words has maximal state complexity, which also implies complete reachability. Here, we take a closer look at generalized circular and completely reachable automata. We derive that over a binary alphabet every completely reachable automaton must be circular, a consequence of a structural result stating that completely reachable automata over strictly less letters than states always contain permutational letters. We state sufficient conditions for the state complexity of the set of synchronizing words of a generalized circular automaton to be maximal. We apply our main criteria to the family \(\mathscr {K}_n\) of automata that was previously only conjectured to have this property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The circular automata are a proper subfamily of the generalized circular automata, as shown by \(\mathscr {A} = (\{a,b\}, [3], \delta )\) with \(\delta (0, a) = 1, \delta (1, a) = 0, \delta (2,a) = 2\) and \(\delta (0, b) = 0, \delta (1, b) = 2, \delta (2, b) = 1\). The word ba cyclically permutes the states.

  2. 2.

    For, if we choose a finite number of words and build the automaton by identifying these words with new letters, distinguishability or reachability of states (or subsets of states) of this new automaton is inherited to the original automaton. Hence, all results are also valid when stated with words instead of letters, but otherwise the same conditions.

  3. 3.

    Note that \(0< m < n\) implies \(\delta (q, b^m) \ne q\). Also note that we added n on the right hand side to account for values \(d > 1\). In Proposition 10 we only subtract one from the exponent of b, which is always non-zero and strictly smaller than n, and so we do not needed this “correction for the b-cycle” in case of resulting negative exponents.

  4. 4.

    Note that here, even if the bounds for m from Theorem 8 do not include this case, \(\delta (q, w) = \delta (q, b^nw) = \delta (q, wb^{n-1})\), which is equivalent with \(\delta (q, w) = \delta (q, b)\).

  5. 5.

    I slightly changed the numbering of the states with respect to the action of the letter a compared to [13].

References

  1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_7

    Chapter  Google Scholar 

  2. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large exponents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bondar, E.A., Volkov, M.V.: Completely reachable automata. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 1–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41114-9_1

    Chapter  Google Scholar 

  4. Bondar, E.A., Volkov, M.V.: A characterization of completely reachable automata. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 145–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8_12

    Chapter  Google Scholar 

  5. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

    Google Scholar 

  6. Don, H.: The Černý conjecture and 1-contracting automata. Electron. J. Comb. 23(3), P3.12 (2016)

    Article  MathSciNet  Google Scholar 

  7. Dubuc, L.: Les automates circulaires biaisés vérifient la conjecture de Cerný. ITA 30(6), 495–505 (1996)

    MATH  Google Scholar 

  8. Dubuc, L.: Sur les automates circulaires et la conjecture de Cerný. ITA 32(1–3), 21–34 (1998)

    Google Scholar 

  9. Gonze, F., Jungers, R.M.: Hardly reachable subsets and completely reachable automata with 1-deficient words. J. Automata Lang. Comb. 24(2–4), 321–342 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Hoffmann, S.: Completely reachable automata, primitive groups and the state complexity of the set of synchronizing words. In: Leporati, A., et al. (eds.) LATA 2021. LNCS, vol. 12638, pp. 305–317. Springer, Cham (2021)

    Google Scholar 

  11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, Boston (1979)

    MATH  Google Scholar 

  12. Maslennikova, M.I.: Reset complexity of ideal languages. CoRR abs/1404.2816 (2014)

    Google Scholar 

  13. Maslennikova, M.I.: Reset complexity of ideal languages over a binary alphabet. Int. J. Found. Comput. Sci. 30(6–7), 1177–1196 (2019)

    Article  MathSciNet  Google Scholar 

  14. Pin, J.E.: Sur un cas particulier de la conjecture de Cerny. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 345–352. Springer, Heidelberg (1978). https://doi.org/10.1007/3-540-08860-1_25

    Chapter  Google Scholar 

  15. Sandberg, S.: 1 Homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/10.1007/11498490_2

    Chapter  Google Scholar 

  16. Starke, P.H.: Eine Bemerkung über homogene Experimente. Elektronische Informationsverarbeitung und Kybernetik (later J. Inf. Process. Cybern.) 2(4), 257–259 (1966)

    MATH  Google Scholar 

  17. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, S. (2021). State Complexity of the Set of Synchronizing Words for Circular Automata and Automata over Binary Alphabets. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds) Language and Automata Theory and Applications. LATA 2021. Lecture Notes in Computer Science(), vol 12638. Springer, Cham. https://doi.org/10.1007/978-3-030-68195-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68195-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68194-4

  • Online ISBN: 978-3-030-68195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics