Skip to main content

Graph Neural Networks in Cheminformatics

  • Conference paper
  • First Online:
Intelligent Computing and Optimization (ICO 2020)

Abstract

Graph neural networks represent nowadays the most effective machine learning technology in the biochemistry domain. Learning on the huge amount of chemical data can take an important part in finding new molecules or new drugs, which is a crucial research work in cheminformatics. This work would be no more time-consuming and labor-intensive with the assistant of machine learning techniques: they are capable of both handling massive datasets and learning the hidden information from the structure of graphs. In terms of applying machine learning of graphs in chemistry, this paper discusses the explorations on the following matters. Firstly, we introduce the up-to-date study of the machine learning approaches being applied in solving cheminformatics research problems. Secondly, we present concise overviews on the original mathematical model and variants of graph neural networks and the utilization in drug discovery evaluating the performance with machine learning. We end our analysis with a critical discussion of potential research based on current literature reviews and suggestions for relevant approaches and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joshua Thomas, J., Pillai, N.: A deep learning framework on generation of image descriptions with bidirectional recurrent neural networks. In: Advances in Intelligent Systems and Computing, vol. 866. Springer International Publishing (2019). https://doi.org/10.1007/978-3-030-00979-3_22

  2. Lipinski, C.F., Maltarollo, V.G., Oliveira, P.R., da Silva, A.B.F., Honorio, K.M.: Advances and perspectives in applying deep learning for drug design and discovery. Front. Robot. AI 6(November), 1–6 (2019). https://doi.org/10.3389/frobt.2019.00108

    Article  Google Scholar 

  3. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T.: The rise of deep learning in drug discovery. Drug Discov. Today 23(6), 1241–1250 (2018). https://doi.org/10.1016/j.drudis.2018.01.039

    Article  Google Scholar 

  4. Li, J., Cai, D., He, X.: Learning Graph-Level Representation for Drug Discovery (2017). http://arxiv.org/abs/1709.03741

  5. Lo, Y.C., Rensi, S.E., Torng, W., Altman, R.B.: Machine learning in chemoinformatics and drug discovery. Drug Discov. Today, 23(8), 1538–1546. Elsevier Ltd. (2018). https://doi.org/10.1016/j.drudis.2018.05.010

  6. Chan, H.C.S., Shan, H., Dahoun, T., Vogel, H., Yuan, S.: Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 40(8), 592–604 (2019). https://doi.org/10.1016/j.tips.2019.06.004

    Article  Google Scholar 

  7. Rifaioglu, A.S., Atas, H., Martin, M.J., Cetin-Atalay, R., Atalay, V., Doǧan, T.: Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform. 20(5), 1878–1912 (2019). https://doi.org/10.1093/bib/bby061

    Article  Google Scholar 

  8. Chen, R., Liu, X., Jin, S., Lin, J., Liu, J.: Machine learning for drug-target interaction prediction. Molecules 23(9), 1–15 (2018). https://doi.org/10.3390/molecules23092208

    Article  Google Scholar 

  9. Wang, H., Wang, J., Dong, C., Lian, Y., Liu, D., Yan, Z.: A novel approach for drug-target interactions prediction based on multimodal deep autoencoder. Front. Pharmacol. 10, 1–19 (2020). https://doi.org/10.3389/fphar.2019.01592

    Article  Google Scholar 

  10. Ding, H., Takigawa, I., Mamitsuka, H., Zhu, S.: Similarity-based machine learning methods for predicting drug-target interactions: A brief review. Brief. Bioinform. 15(5), 734–747 (2013). https://doi.org/10.1093/bib/bbt056

    Article  Google Scholar 

  11. Sachdev, K., Gupta, M.K.: A comprehensive review of feature-based methods for drug target interaction prediction. J. Biomed. Inf. Elsevier (2019). https://doi.org/10.1016/j.jbi.2019.103159

  12. Thomas, J.J., Ali, A.M.: Dispositional learning analytics structure integrated with recurrent neural networks in predicting students performance. In: Vasant, P., Zelinka, I., Weber, G.W. (eds.) Intelligent Computing and Optimization. ICO 2019. Advances in Intelligent Systems and Computing, vol 1072. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_44

  13. Dahl, G.E., Jaitly, N., Salakhutdinov, R. Multi-task Neural Networks for QSAR Predictions, pp. 1–21 (2014). http://arxiv.org/abs/1406.1231

  14. Tian, K., Shao, M., Wang, Y., Guan, J., Zhou, S.: Boosting compound-protein interaction prediction by deep learning. Methods 110, 64–72 (2016). https://doi.org/10.1016/j.ymeth.2016.06.024

    Article  Google Scholar 

  15. Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Central Sci. 4(1), 120–131 (2018). https://doi.org/10.1021/acscentsci.7b00512

    Article  Google Scholar 

  16. Gupta, A., Müller, A.T., Huisman, B.J.H., Fuchs, J.A., Schneider, P., Schneider, G.: Generative recurrent networks for De Novo drug design. Mol. Inf. 37(1) (2018). https://doi.org/10.1002/minf.201700111

  17. Hirohara, M., Saito, Y., Koda, Y., Sato, K., Sakakibara, Y.: Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. BMC Bioinf. 19(Suppl 19), 83–94 (2018). https://doi.org/10.1186/s12859-018-2523-5

    Article  Google Scholar 

  18. Lee, I., Keum, J., Nam, H.: DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput. Biol. 15(6), 1–21 (2019). https://doi.org/10.1371/journal.pcbi.1007129

    Article  Google Scholar 

  19. Öztürk, H., Özgür, A., Ozkirimli, E.: DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics 34(17), i821–i829 (2018). https://doi.org/10.1093/bioinformatics/bty593

    Article  Google Scholar 

  20. Trabelsi, A., Chaabane, M., Ben-Hur, A.: Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics 35(14), i269–i277 (2019). https://doi.org/10.1093/bioinformatics/btz339

    Article  Google Scholar 

  21. Karimi, M., Wu, D., Wang, Z., Shen, Y.: DeepAffinity: Interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18), 3329–3338 (2019). https://doi.org/10.1093/bioinformatics/btz111

    Article  Google Scholar 

  22. Samanta, B., De, A., Jana, G., Chattaraj, P.K., Ganguly, N., Rodriguez, M.G.: NeVAE: a deep generative model for molecular graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1110–1117 (2019). https://doi.org/10.1609/aaai.v33i01.33011110

  23. Lim, J., Hwang, S.Y., Moon, S., Kim, S., Kim, W.Y.: Scaffold-based molecular design with a graph generative model. Chem. Sci. 11(4), 1153–1164 (2019). https://doi.org/10.1039/c9sc04503a

    Article  Google Scholar 

  24. Gómez-Bombarelli, R., Wei, J.N., Duvenaud, D., Hernández-Lobato, J.M., SánchezLengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T.D., Adams, R.P., Aspuru-Guzik, A.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci. 4(2), 268–276 (2018). https://doi.org/10.1021/acscentsci.7b00572

    Article  Google Scholar 

  25. Bjerrum, E.J., Sattarov, B.: Improving chemical autoencoder latent space and molecular de novo generation diversity with heteroencoders. Biomolecules 8(4), 1–13 (2018). https://doi.org/10.3390/biom8040131

    Article  Google Scholar 

  26. Lim, J., Ryu, S., Kim, J.W., Kim, W.Y.: Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminform. 10(1), 1–9 (2018). https://doi.org/10.1186/s13321-018-0286-7

    Article  Google Scholar 

  27. Sattarov, B., Baskin, I.I., Horvath, D., Marcou, G., Bjerrum, E.J., Varnek, A.: De Novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping. J. Chem. Inf. Model. 59(3), 1182–1196. Research-Article (2019). https://doi.org/10.1021/acs.jcim.8b00751

  28. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2009)

    Article  Google Scholar 

  29. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A Comprehensive Survey on Graph Neural Networks, pp. 1–22 (2019). http://arxiv.org/abs/1901.00596

  30. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, pp. 1–14 (2017). https://arxiv.org/abs/1609.02907

  31. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  32. Li, Y., Zemel, R., Brockschmidt, M., Tarlow, D.: Gated graph sequence neural networks. In: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, pp. 1–20 (2016)

    Google Scholar 

  33. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: GraphRNN: generating realistic graphs with deep auto-regressive models. In: 35th International Conference on Machine Learning, ICML 2018, vol. 13, pp. 9072–9081 (2018)

    Google Scholar 

  34. Popova, M., Shvets, M., Oliva, J., Isayev, O.: MolecularRNN: Generating realistic molecular graphs with optimized properties (2019). https://arxiv.org/abs/1905.13372

  35. Hajiramezanali, E., Hasanzadeh, A., Duffield, N., Narayanan, K.R., Zhou, M., Qian, X.: Variational Graph Recurrent Neural Networks, pp. 1–12 (2019). http://arxiv.org/abs/1908.09710

  36. Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R., Hirzel, T., Aspuru-Guzik, A., Adams, R.P.: Convolutional networks on graphs for learning molecular fingerprints. In: Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)

    Google Scholar 

  37. Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comp. Aided Mol. Des. 30, 595–608 (2016). https://doi.org/10.1007/s10822-016-9938-8

  38. Coley, C.W., Jin, W., Rogers, L., Jamison, T.F., Jaakkola, T.S., Green, W.H., Jensen, K.F.: A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10(2), 370–377 (2019). https://doi.org/10.1039/c8sc04228d

    Article  Google Scholar 

  39. Ryu, S., Lim, J., Hong, S.H., Kim, W.Y.: Deeply learning molecular structure-property relationships using attention- and gate-augmented graph convolutional network (2018). https://doi.org/10.1039/b000000x/been

  40. Tsubaki, M., Tomii, K., Sese, J.: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309–318 (2019). https://doi.org/10.1093/bioinformatics/bty535

    Article  Google Scholar 

  41. Nguyen, T., Le, H., Quinn, T.P., Le, T., Venkatesh, S.: Predicting drug–target binding affinity with graph neural networks. BioRxiv 12, 1–18 (2019). https://doi.org/10.1101/684662

    Article  Google Scholar 

  42. Thomas, J.J., Tran, H.N.T., Lechuga, G.P., Belaton, B.: Convolutional graph neural networks: a review and applications of graph autoencoder in chemoinformatics. In: Thomas, J.J., Karagoz, P., Ahamed, B.B., Vasant, P. (eds.) Deep Learning Techniques and Optimization Strategies in Big Data Analytics, pp. 107–123. IGI Global (2020). http://doi.org/10.4018/978-1-7998-1192-3.ch007

  43. Niepert, M., Ahmad, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: 33rd International Conference on Machine Learning, ICML 2016, vol. 4, pp. 2958–2967 (2016)

    Google Scholar 

  44. Kusner, M.J., Paige, B., Hemández-Lobato, J.M.: Grammar variational autoencoder. In: 34th International Conference on Machine Learning, ICML 2017, vol. 4, pp. 3072–3084 (2017)

    Google Scholar 

  45. Simonovsky, M., Komodakis, N.: GraphVAE: towards generation of small graphs using variational autoencoders. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 11139, pp. 412–422 (2018). https://doi.org/10.1007/978-3-030-01418-6_41

  46. De Cao, N., Kipf, T.: MolGAN: An implicit generative model for small molecular graphs (2018). http://arxiv.org/abs/1805.11973

  47. Bresson, X., Laurent, T.: A Two-Step Graph Convolutional Decoder for Molecule Generation (2019). http://arxiv.org/abs/1906.03412

  48. Lim, J., Ryu, S., Park, K., Choe, Y.J., Ham, J., Kim, W.Y.: Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation. J. Chem. Inf. Model. 59(9), 3981–3988. Research-Article (2019). https://doi.org/10.1021/acs.jcim.9b00387

  49. Gonczarek, A., et al.: Interaction prediction in structure-based virtual screening using deep learning. Comput. Biol. Med. (2017). https://doi.org/10.1016/j.compbiomed.2017.09.007

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Fundamental Research Grant Scheme (FRGS) of the Ministry of Higher Education Malaysia under the grant project number FRGS/1/2019/ICT02/KDUPG/02/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Joshua Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, H.N.T., Joshua Thomas, J., Malim, N.H.A.H., Ali, A.M., Huynh, S.B. (2021). Graph Neural Networks in Cheminformatics. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham. https://doi.org/10.1007/978-3-030-68154-8_71

Download citation

Publish with us

Policies and ethics