Skip to main content

Management of Food Waste for Sustainable Economic Development and Circularity

  • Living reference work entry
  • First Online:
Handbook of Sustainability Science in the Future

Abstract

Food waste, such as biological byproducts and residues, have a chemical composition based on carbohydrates such as hexoses and pentoses and complex molecules such as cellulose, lignin, pentosans and hemicelluloses, antioxidants, flavonoids, phenols, carotenoids, lipids, and phytochemicals. Therefore, waste is a cheaper renewable source for bioproduct production to reduce the externalities of the commodities market and achieve economic development and well-being without depending on fossil or mineral sources. Hence, the valorization of food waste in the circular economy as a feedstock would reduce the use of conventional food commodities such as cane, cereals, soybean, beet, and oilseeds for human consumption and animal feed, in addition to reducing the deforestation for new farmland, energy, water, and environmental impacts on air, water, soil, and ecosystems derived from the production, pretreatment, handling, transportation and transformation, and the cost of achieving feasible production processes also solve the issue of waste disposal. Because the landfill disposal of this organic waste can be difficult, it is a primary concern for environmental pollution due to degradation. This chapter reviews the state of the art of technological frameworks with regard to the physicochemical properties of food waste and use with conventional treatments, use in biorefineries to produce food, feed, biofertilizers, fiber, biofuel, bioproducts, and the value chain, and socio-economic and environmental impacts according to the circular bioeconomy with the life cycle assessment approach toward sustainable production. Besides, case studies are presented as an example of the need to incorporate at least conventional technologies for transforming food waste into bioproducts in the transition to a green economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abiad MG, Meho LI (2018) Food loss and food waste research in the Arab world: a systematic review. Food Secur 10(2):311–322

    Article  Google Scholar 

  • Al-Dalaeen QR, Sivarajah U, Irani Z (2021) Determining sustainability key performance indicators for food loss reduction. J Enterp Inf Manag 34(3):733–745

    Article  Google Scholar 

  • Avendaño-Arrazate CH, Arrazate-Argueta JA, Ortíz-Curiel S, Moreno-Pérez E, Iracheta-Donjuan L, Reyes-López D, Cortés-Cruz M (2017) Morphological characterization in wild species of Heliconias (Heliconia spp) in Mexico. Am J Plant Sci 8(06):1210

    Article  Google Scholar 

  • Barrera EL, Hertel T (2021) Global food waste across the income spectrum: implications for food prices, production and resource use. Food Policy 98:101874

    Article  Google Scholar 

  • Beausang C, Hall C, Toma L (2017) Food waste and losses in primary production: qualitative insights from horticulture. Resour Conserv Recycl 126:177–185

    Article  Google Scholar 

  • Burchi F, De Muro P (2012) A human development and capability approach to food security: conceptual framework and informational basis. Background paper, 8. https://econpapers.repec.org/RePEc:rac:wpaper:2012-009

  • Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G, Sala S (2020) Sustainability of food waste biorefinery: a review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour Technol 312:123575

    Article  CAS  Google Scholar 

  • Çalışkan Eleren S, Öziş Altınçekiç Ş, Altınçekiç E (2018) Biofuel potential of fruit juice industry waste. J Hazardous Toxic Radioactive Waste 22(4):05018002

    Article  Google Scholar 

  • Chauhan C, Dhir A, Akram MU, Salo J (2021) Food loss and waste in food supply chains. A systematic literature review and framework development approach. J Clean Prod 295:126438

    Article  Google Scholar 

  • Chen H, Jiang W, Yang Y, Yang Y, Man X (2017) State of the art on food waste research: a bibliometrics study from 1997 to 2014. J Clean Prod 140:840–846

    Article  CAS  Google Scholar 

  • Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems–a LCA case study. Appl Energy 87(1):47–57. https://doi.org/10.1016/j.apenergy.2009.08.024

    Article  CAS  Google Scholar 

  • Chhandama MVL, Chetia AC, Satyan KB, Ruatpuia JV, Rokhum SL (2022) Valorisation of food waste to sustainable energy and other value-added products: a review. Bioresour Technol Reports 17:100945

    Article  Google Scholar 

  • Clairand JM, Briceño-León M, Escrivá-Escrivá G, Pantaleo AM (2020) Review of energy efficiency technologies in the food industry: trends, barriers, and opportunities. IEEE Access 8:48015–48029

    Article  Google Scholar 

  • Clapp J (2017) Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66:88–96

    Article  Google Scholar 

  • Coma M, Martinez-Hernandez E, Abeln F, Raikova S, Donnelly J, Arnot TC, Chuck CJ (2017) Organic waste as a sustainable feedstock for platform chemicals. Faraday Discuss 202:175–195

    Article  CAS  Google Scholar 

  • Delgado L, Schuster M, Torero M (2021) Quantity and quality food losses across the value chain: a comparative analysis. Food Policy 98:101958

    Article  Google Scholar 

  • Denham D, Gladstone F (2020) Making sense of food system transformation in Mexico. Geoforum 115:67–80

    Article  Google Scholar 

  • Dou Z, Toth JD (2021) Global primary data on consumer food waste: rate and characteristics–a review. Resour Conserv Recycl 168:105332

    Article  CAS  Google Scholar 

  • Ebner J, Babbitt C, Winer M, Hilton B, Williamson A (2014) Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Appl Energy 130:86–93

    Article  CAS  Google Scholar 

  • Engelberth AS (2020) Evaluating economic potential of food waste valorization: onward to a diverse feedstock biorefinery. Curr Opin Green Sustain Chem 26:100385

    Article  Google Scholar 

  • Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM (2020) Fruit and vegetable waste management: conventional and emerging approaches. J Environ Manag 265:110510

    Article  CAS  Google Scholar 

  • FAOSTAT (2020) Food and agriculture data. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data

  • Fraser ED, Campbell M (2019) Agriculture 5.0: reconciling production with planetary health. One Earth 1(3):278–280

    Article  Google Scholar 

  • Galanakis CM (ed) (2019) Valorization of fruit processing by-products. Academic, New York

    Google Scholar 

  • Galanakis CM, Cvejic J, Verardo V, Segura-Carretero A (2022) Food use for social innovation by optimizing food waste recovery strategies. In: Innovation strategies in the food industry. Academic, New York, pp 209–227

    Chapter  Google Scholar 

  • Ghosh PR, Fawcett D, Sharma SB, Poinern GEJ (2016) Progress towards sustainable utilisation and management of food wastes in the global economy. Int J Food Sci 2016:3563478

    Article  Google Scholar 

  • Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manag 45:32–41

    Article  CAS  Google Scholar 

  • Gustafsson J, Cederberg C, Sonesson U, Emanuelsson A (2013) The methodology of the FAO study: global food losses and food waste-extent, causes and prevention”-FAO, 2011. https://www.diva-portal.org/smash/get/diva2:944159/FULLTEXT01.pdf

  • Hall CA, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Policy 64:141–152

    Article  Google Scholar 

  • IPCC (2019) Summary for policy makers. Climate Change and Land. Retrieved from https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf

  • Isiordia-Lachica PC, Valenzuela A, Rodríguez-Carvajal RA, Hernández-Ruiz J, Romero-Hidalgo JA (2020) Identification and analysis of technology and knowledge transfer experiences for the agro-food sector in Mexico. J Open Innov Technol Market Complexity 6(3):59

    Article  Google Scholar 

  • Jeswani HK, Chilvers A, Azapagic A (2020) Environmental sustainability of biofuels: a review. Proc R Soc A 476(2243):20200351

    Article  Google Scholar 

  • Joglekar SN, Pathak PD, Mandavgane SA, Kulkarni BD (2019) Process of fruit peel waste biorefinery: a case study of citrus waste biorefinery, its environmental impacts and recommendations. Environ Sci Pollut Res 26(34):34713–34722

    Article  Google Scholar 

  • Karthikeyan OP, Mehariya S, Wong JWC (2017) Bio-refining of food waste for fuel and value products. Energy Procedia 136:14–21

    Article  Google Scholar 

  • Kavitha S, Kannah RY, Kumar G, Gunasekaran M, Banu JR (2020) Introduction: sources and characterization of food waste and food industry wastes. In: Food waste to valuable resources. Academic, New York, pp 1–13

    Google Scholar 

  • Konti A, Kekos D, Mamma D (2020) Life cycle analysis of the bioethanol production from food waste – a review. Energies 13(19):5206

    Article  CAS  Google Scholar 

  • Kosseva MR (2009) Processing of food wastes. Adv Food Nutr Res 58:57–136

    Article  CAS  Google Scholar 

  • Kumar H, Bhardwaj K, Sharma R, Nepovimova E, Kuča K, Dhanjal DS, Kumar D (2020) Fruit and vegetable peels: utilization of high value horticultural waste in novel industrial applications. Molecules 25(12):2812

    Article  CAS  Google Scholar 

  • Lam CM, Iris KM, Hsu SC, Tsang DC (2018) Life-cycle assessment on food waste valorisation to value-added products. J Clean Prod 199:840–848

    Article  CAS  Google Scholar 

  • Leisner CP (2020) Climate change impacts on food security-focus on perennial cropping systems and nutritional value. Plant Sci 293:110412

    Article  CAS  Google Scholar 

  • Liska AJ (2015) Eight principles of uncertainty for life cycle assessment of biofuel systems. In: Bhardwaj AK, Zenone T, Chen JK (eds) Sustainable biofuels: an ecological assessment of future energy. De Gruyter, Berlin, pp 243–268

    Chapter  Google Scholar 

  • Liu C, Nguyen TT (2020) Evaluation of household food waste generation in Hanoi and policy implications towards SDGs target 12.3. Sustainability 12(16):6565

    Article  Google Scholar 

  • Lomborg B (2020) Welfare in the 21st century: increasing development, reducing inequality, the impact of climate change, and the cost of climate policies. Technol Forecast Soc Chang 156:119981

    Article  Google Scholar 

  • Mak TM, Xiong X, Tsang DC, Iris KM, Poon CS (2020) Sustainable food waste management towards circular bioeconomy: policy review, limitations and opportunities. Bioresour Technol 297:122497

    Article  CAS  Google Scholar 

  • Makanjuola O, Arowosola T, Chenyu D (2020) The utilization of food waste: challenges and opportunities. J Food Chem Nanotechnol 6(4):182–188

    Article  Google Scholar 

  • Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P (2017) Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83

    Article  Google Scholar 

  • Mirabella N, Castellani V, Sala S (2014) Current options for the valorization of food manufacturing waste: a review. J Clean Prod 65:28–41

    Article  Google Scholar 

  • Muhammad NIS, Rosentrater KA (2020) Techno-economic evaluation of food waste fermentation for value-added products. Energies 13(2):436

    Article  CAS  Google Scholar 

  • Nab C, Maslin M (2020) Life cycle assessment synthesis of the carbon footprint of Arabica coffee: case study of Brazil and Vietnam conventional and sustainable coffee production and export to the United Kingdom. Geo: Geogr Environ 7(2):e00096

    Google Scholar 

  • Nayak A, Bhushan B (2019) An overview of the recent trends on the waste valorization techniques for food wastes. J Environ Manag 233:352–370

    Article  CAS  Google Scholar 

  • Neves MF, Gray A, Valerio FR (2020) Food and agribusiness in 2030. Wageningen Academic Publishers, Wageningen

    Book  Google Scholar 

  • Ögmundarson Ó, Herrgård MJ, Forster J, Hauschild MZ, Fantke P (2020) Addressing environmental sustainability of biochemicals. Nat Sustain 3:167–174

    Article  Google Scholar 

  • Olay-Romero E, Turcott-Cervantes DE, del Consuelo H-BM, de Cortázar ALG, Cuartas-Hernández M, de la Rosa-Gómez I (2020) Technical indicators to improve municipal solid waste management in developing countries: a case in Mexico. Waste Manag 107:201–210

    Article  Google Scholar 

  • Pap N, Pongrácz E, Myllykoski L, Keiski RL (2014) Waste minimization and utilization in the food industry: valorization of food industry wastes and byproducts. In: Sahu JK (ed) Advances in food process engineering. Taylor and Francis, Boca Raton, pp 595–629

    Google Scholar 

  • Poole N, Donovan J, Erenstein O (2020) Agri-nutrition research: revisiting the contribution of maize and wheat to human nutrition and health. Food Policy 100:101976

    Article  Google Scholar 

  • Ramasamy R, Subramanian P (2022) Bioconversion of food waste to wealth–circular bioeconomy approach. In: Biotechnology for zero waste: emerging waste management techniques. Wiley-VCH, Weinheim, pp 421–438

    Chapter  Google Scholar 

  • Reyna-Bensusan N, Wilson DC, Smith SR (2018) Uncontrolled burning of solid waste by households in Mexico is a significant contributor to climate change in the country. Environ Res 163:280–288

    Article  CAS  Google Scholar 

  • Rincón-Moreno J, Franco-García ML, Carpio-Aguilar JC, Hernández-Sarabia M (2019) Share, optimise, closed-loop for food waste (SOL4FoodWaste): the case of Walmart-Mexico. In: Towards zero waste. Springer, Cham, pp 165–190

    Google Scholar 

  • SENER (2014) Atlas Nacional de Biomasa. Secretaria de Energía. https://dgel.energia.gob.mx/anbio/mapa.html?lang=en

  • Shin HS, Youn JH (2005) Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation 16(1):33–44. https://doi.org/10.1007/s10531-004-0377-9

    Article  CAS  Google Scholar 

  • Smetana S (2020) Life cycle assessment of specific organic waste-based bioeconomy approaches. Curr Opin Green Sustain Chem 23:50–54

    Article  Google Scholar 

  • Stone J, Garcia-Garcia G, Rahimifard S (2019) Development of a pragmatic framework to help food and drink manufacturers select the most sustainable food waste valorisation strategy. J Environ Manag 247:425–438

    Article  Google Scholar 

  • Thi NBD, Kumar G, Lin CY (2015) An overview of food waste management in developing countries: current status and future perspective. J Environ Manag 157:220–229

    Article  Google Scholar 

  • Torres-León C, Ramírez-Guzman N, Londoño-Hernandez L, Martinez-Medina GA, Díaz-Herrera R, Navarro-Macias V, Aguilar CN (2018) Food waste and byproducts: an opportunity to minimize malnutrition and hunger in developing countries. Front Sustain Food Syst 2:52

    Article  Google Scholar 

  • Tsydenova N, Vázquez Morillas A, Cruz Salas AA (2018) Sustainability assessment of waste management system for Mexico City (Mexico) – based on analytic hierarchy process. Recycling 3(3):45

    Article  Google Scholar 

  • UNDP (2020) Human development report 2020. The Next Frontier: Human Development and the Anthropocene. New York. http://hdr.undp.org/en/content/human-development-report-2020

  • Xiong X, Iris KM, Tsang DC, Bolan NS, Ok YS, Igalavithana AD, Vikrant K (2019) Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects. Chem Eng J 375:121983

    Article  CAS  Google Scholar 

  • Xue L, Liu G, Parfitt J, Liu X, Van Herpen E, Stenmarck Å, Cheng S (2017) Missing food, missing data? A critical review of global food losses and food waste data. Environ Sci Technol 51(12):6618–6633

    Article  CAS  Google Scholar 

  • Zhang M, Gao M, Yue S, Zheng T, Gao Z, Ma X, Wang Q (2018) Global trends and future prospects of food waste research: a bibliometric analysis. Environ Sci Pollut Res 25(25):24600–24610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Aguilar-Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aguilar-Rivera, N., Olvera-Vargas, L.A. (2023). Management of Food Waste for Sustainable Economic Development and Circularity. In: Leal Filho, W., Azul, A.M., Doni, F., Salvia, A.L. (eds) Handbook of Sustainability Science in the Future. Springer, Cham. https://doi.org/10.1007/978-3-030-68074-9_173-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68074-9_173-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68074-9

  • Online ISBN: 978-3-030-68074-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics