Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 296 Accesses

Abstract

Standard methods for minimizing a real-valued function of several variables can be divided into two general classes: those that require second derivative information, usually referred to as Newton-type methods, and those requiring only first derivative information, referred to as gradient methods. There are several excellent texts which, in addition to discussing many of these methods in detail, also give suggestions on when to use certain techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are considering only ‘electric-electric’ interactions in this chapter. We assume that all hosts and flaws are nonmagnetic.

References

  1. A. Abubakar, T.M. Habashy, Near well-bore imaging of the triaxial induction logging data using the multiplicative regularized contrast source inversion method, in 23rd Annual Review of Progress in Applied Computational Electromagnetics, March 19–23, Verona (Applied Computational Electromagnetics Society, 2007), pp. 653–660

    Google Scholar 

  2. G. Angiulli, T. Isernia, S. Tringali, Modeling realistic contrast maps from MRI images for microwave breast cancer detection. IEEE Antennas Propag. Mag. 53(1), 113–122 (2011)

    Article  ADS  Google Scholar 

  3. S. Barkeshli, D.J. Radecki, H.A. Sabbagh, On a linearized inverse scattering model for a three-dimensional flaw embedded in anisotropic advanced composite materials. IEEE Trans. Geosci. Remote Sens. 30(1), 71–80 (1992)

    Article  ADS  Google Scholar 

  4. Y. Censor, Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23, 444–446 (1981)

    Article  MathSciNet  Google Scholar 

  5. R. Fletcher, Practical Methods of Optimization, 2nd edn. (Wiley, Hoboken, 1987)

    MATH  Google Scholar 

  6. G.T. Herman, L.B. Meyer, Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imag. 12(3), 600–609 (1993)

    Article  Google Scholar 

  7. G.T. Herman, A. Lent, H. Hurwitz, A storage-efficient algorithm for finding the regularized solution of a large, inconsistent system of equations. J. Inst. Math. Appl. 25, 361–366 (1980)

    Article  MathSciNet  Google Scholar 

  8. M. Hestenes, Conjugate Direction Methods in Optimization. (Springer, New York, 1980)

    Google Scholar 

  9. D.L. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley, Boston, 1973)

    MATH  Google Scholar 

  10. H.A. Sabbagh, R.G. Lautzenheiser, Inverse problems in electromagnetic nondestructive evaluation, in Nonlinear Phenomena in Electromagnetic Fields, ed. by T. Furuhashi, Y. Uchikawa (Elsevier, Amsterdam, 1992), pp. 177–180

    Google Scholar 

  11. H.A. Sabbagh, R.G. Lautzenheiser, Inverse problems in electromagnetic nondestructive evaluation. Int. J. Appl. Electromagn. Mater. 3, 253–261 (1993)

    Google Scholar 

  12. H.A. Sabbagh, R.G. Lautzenheiser, Inverse problems in electromagnetic nondestructive evaluation, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti, vol. 13 (Plenum Press, New York, 1994), pp. 911–918

    Google Scholar 

  13. H.A. Sabbagh, L.D. Sabbagh, S.N. Vernon, Verification of an eddy-current flaw inversion algorithm. IEEE Trans. Magn. 22(6), 1881–1886 (1986)

    Article  ADS  Google Scholar 

  14. H.A. Sabbagh, D.J. Radecki, S. Barkeshli, B. Shamee, J.C. Treece, S.A. Jenkins, Inversion of eddy-current data and the reconstruction of three-dimensional flaws. IEEE Trans. Magn. 26(2), 626–629 (1990)

    Article  ADS  Google Scholar 

  15. H.A. Sabbagh, R. Kim Murphy, E.H. Sabbagh, J.C. Aldrin, J.S. Knopp, Computational Electromagnetics and Model-Based Inversion: A Modern Paradigm for Eddy-Current Nondestructive Evaluation (Springer, New York, 2013)

    Book  Google Scholar 

  16. P.M. van den Berg, A. Abubakar, Contrast source inversion method: state of art. Prog. Electromagn. Res. PIER 34, 189–218 (2001)

    Article  Google Scholar 

  17. R. Zorgati, et al., IEEE Trans. Magn. 27(6), 4416–4431 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabbagh, H.A., Kim Murphy, R., Sabbagh, E.H., Zhou, L., Wincheski, R. (2021). A Bilinear Conjugate-Gradient Inversion Algorithm. In: Advanced Electromagnetic Models for Materials Characterization and Nondestructive Evaluation. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-67956-9_1

Download citation

Publish with us

Policies and ethics