Skip to main content

Morphogenetic Aspects of Mitral Valve Development

  • Chapter
  • First Online:
  • 760 Accesses

Abstract

The mitral and tricuspid valves develop at the junction between the atria and ventricles from primordia known as endocardial cushions. These endocardial cushions remodel throughout foetal life and into the neonatal period to form the sculpted leaflets and support apparatus that are seen in the mature healthy valve. Although the early steps and molecular pathways involved in the early stages of mitral valve formation are fairly well understood, key gaps remain, particularly relating to remodelling of the valve leaflets from their endocardial cushion precursors. Whereas the majority of the early processes involved in mitral valve development are thought to be very similar to that for the tricuspid valve, subtle differences in embryonic cell lineage contributions, gene expression, and exposure to different haemodynamic forces may influence their differential maturation and the disorders they incur. In this chapter we focus on the molecular genetic factors that influence atrioventricular valve development, highlighting reported differences between the mitral and tricuspid valves that may account for their differential development, physiology, and function. By necessity, the majority of this experimental information comes from experiments in the mouse, and occasionally the chicken. However, the close similarity in cardiovascular development between these organisms and ourselves means that as we begin to analyse human embryos, we are finding that the same genes and processes are involved in all these higher vertebrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Vlaming A, Sauls K, Hajdu Z, Visconti RP, Mehesz AN, Levine RA, Slaugenhaupt SA, Hagège A, Chester AH, Markwald RR, Norris RA. Atrioventricular valve development: new perspectives on an old theme. Differentiation. 2012 Jul;84(1):103–16.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hinton RB, Yutzey KE. Heart valve structure and function in development and disease. Annu Rev Physiol. 2011;73:29–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. MacGrogan D, Luxán G, Driessen-Mol A, Bouten C, Baaijens F, de la Pompa JL. How to make a heart valve: from embryonic development to bioengineering of living valve substitutes. Cold Spring Harb Perspect Med. 2014 Nov 3;4(11):a013912.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Henderson DJ, Chaudhry B, de la Pompa JL. Chapter 18: Development of the arterial valves. In: Pérez-Pomares JM and Kelly R, editors. The ESC textbook of cardiovascular development. Oxford University Press; 2018. ISBN: 978-0-19-875726-9

    Google Scholar 

  5. Wessels A, Sedmera D. Developmental anatomy of the heart: a tale of mice and man. Physiol Genomics. 2003 Nov 11;15(3):165–76.

    Article  PubMed  Google Scholar 

  6. Krishnan A, Samtani R, Dhanantwari P, Lee E, Yamada S, Shiota K, Donofrio MT, Leatherbury L, Lo CW. A detailed comparison of mouse and human cardiac development. Pediatr Res. 2014 Dec;76(6):500–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sylva M, van den Hoff MJ, Moorman AF. Development of the human heart. Am J Med Genet A. 2014 Jun;164A(6):1347–71.

    Article  PubMed  Google Scholar 

  8. Chaudhry B, Ramsbottom S, Henderson DJ. Genetics of cardiovascular development. Prog Mol Biol Transl Sci. 2014;124:19–41.

    Article  CAS  PubMed  Google Scholar 

  9. Kelly RG, Buckingham ME, Moorman AF. Heart fields and cardiac morphogenesis. Cold Spring Harb Perspect Med. 2014 Oct 1;4(10):a015750.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meilhac SM, Buckingham ME. The deployment of cell lineages that form the mammalian heart. Nat Rev Cardiol. 2018 Nov;15(11):705–24.

    Article  PubMed  Google Scholar 

  11. Moorman AF, Christoffels VM. Cardiac chamber formation: development, genes, and evolution. Physiol Rev. 2003 Oct;83(4):1223–67.

    Article  CAS  PubMed  Google Scholar 

  12. Jensen B, Wang T, Christoffels VM, Moorman AF. Evolution and development of the building plan of the vertebrate heart. Biochim Biophys Acta. 2013 Apr;1833(4):783–94.

    Article  CAS  PubMed  Google Scholar 

  13. Ma L, Lu MF, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005 Dec;132(24):5601–11.

    Article  CAS  PubMed  Google Scholar 

  14. Rivera-Feliciano J, Tabin CJ. Bmp2 instructs cardiac progenitors to form the heart valve-inducing field. Dev Biol. 2006;295(2):580–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Papoutsi T, Luna-Zurita L, Prados B, Zaffran S, de la Pompa JL. Bmp2 and Notch cooperate to pattern the embryonic endocardium. Development. 2018 Jul 2;145(13):dev163378.

    Article  PubMed  Google Scholar 

  16. Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ. Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev Biol. 2000 Dec 1;228(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  17. Christoffels VM, Habets PE, Franco D, Campione M, de Jong F, Lamers WH, Bao ZZ, Palmer S, Biben C, Harvey RP, Moorman AF. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol. 2000 Jul 15;223(2):266–78.

    Article  CAS  PubMed  Google Scholar 

  18. Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn. 2004 Apr;229(4):763–70.

    Article  CAS  PubMed  Google Scholar 

  19. Singh MK, Christoffels VM, Dias JM, Trowe MO, Petry M, Schuster-Gossler K, Bürger A, Ericson J, Kispert A. Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development. 2005 Jun;132(12):2697–707.

    Article  CAS  PubMed  Google Scholar 

  20. Singh R, Horsthuis T, Farin HF, Grieskamp T, Norden J, Petry M, Wakker V, Moorman AF, Christoffels VM, Kispert A. Tbx20 interacts with smads to confine tbx2 expression to the atrioventricular canal. Circ Res. 2009 Aug 28;105(5):442–52.

    Article  CAS  PubMed  Google Scholar 

  21. Stennard FA, Costa MW, Lai D, Biben C, Furtado MB, Solloway MJ, McCulley DJ, Leimena C, Preis JI, Dunwoodie SL, Elliott DE, Prall OW, Black BL, Fatkin D, Harvey RP. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development. 2005 May;132(10):2451–62.

    Article  CAS  PubMed  Google Scholar 

  22. Kokubo H, Tomita-Miyagawa S, Hamada Y, Saga Y. Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development. 2007 Feb;134(4):747–55.

    Article  CAS  PubMed  Google Scholar 

  23. Rutenberg JB, Fischer A, Jia H, Gessler M, Zhong TP, Mercola M. Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors. Development. 2006 Nov;133(21):4381–90.

    Article  CAS  PubMed  Google Scholar 

  24. Luna-Zurita L, Prados B, Grego-Bessa J, Luxán G, del Monte G, Benguría A, Adams RH, Pérez-Pomares JM, de la Pompa JL. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest. 2010 Oct;120(10):3493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Watanabe Y, Kokubo H, Miyagawa-Tomita S, Endo M, Igarashi K, Ki A, Kanno J, Saga Y. Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse. Development. 2006 May;133(9):1625–34.

    Article  CAS  PubMed  Google Scholar 

  26. Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci. 2018 Jul;75(13):2339–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prakash S, Borreguero LJJ, Sylva M, Flores Ruiz L, Rezai F, Gunst QD, de la Pompa JL, Ruijter JM, van den Hoff MJB. Deletion of Fstl1 (Follistatin-Like 1) from the endocardial/endothelial lineage causes mitral valve disease. Arterioscler Thromb Vasc Biol. 2017 Sep;37(9):e116–30.

    Article  CAS  PubMed  Google Scholar 

  28. Wessels A, Markman MW, Vermeulen JL, Anderson RH, Moorman AF, Lamers WH. The development of the atrioventricular junction in the human heart. Circ Res. 1996 Jan;78(1):110–7.

    Article  CAS  PubMed  Google Scholar 

  29. Mjaatvedt CH, Yamamura H, Capehart AA, Turner D, Markwald RR. The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev Biol. 1998 Oct 1;202(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  30. Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A Jr, Kubalak S, Klewer SE, McDonald JA. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest. 2000 Aug;106(3):349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schroeder JA, Jackson LF, Lee DC, Camenisch TD. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med (Berl). 2003 Jul;81(7):392–403.

    Article  CAS  Google Scholar 

  32. Wirrig EE, Snarr BS, Chintalapudi MR, O’neal JL, Phelps AL, Barth JL, Fresco VM, Kern CB, Mjaatvedt CH, Toole BP, Hoffman S, Trusk TC, Argraves WS, Wessels A. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development. Dev Biol. 2007 Oct 15;310(2):291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yutzey KE, Colbert M, Robbins J. Ras-related signaling pathways in valve development: ebb and flow. Physiology (Bethesda). 2005 Dec;20:390–7.

    CAS  Google Scholar 

  34. Dupuis LE, McCulloch DR, McGarity JD, Bahan A, Wessels A, Weber D, Diminich AM, Nelson CM, Apte SS, Kern CB. Altered versican cleavage in ADAMTS5 deficient mice; a novel etiology of myxomatous valve disease. Dev Biol. 2011 Sep 1;357(1):152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin X, Liu X, Wang L, Jiang J, Sun Y, Zhu Q, Chen Z, He Y, Hu P, Xu Q, Gao F, Lin Y, Jaiswal S, Xiang M, Wang J. Targeted next-generation sequencing identified ADAMTS5 as novel genetic substrate in patients with bicuspid aortic valve. Int J Cardiol. 2018 Feb 1;252:150–5.

    Article  PubMed  Google Scholar 

  36. Markwald RR, Fitzharris TP, Manasek FJ. Structural development of endocardial cushions. Am J Anat. 1977 Jan;148(1):85–119.

    Article  CAS  PubMed  Google Scholar 

  37. Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004 Sep 3;95(5):459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014 Mar;15(3):178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamagishi T, Ando K, Nakamura H. Roles of TGFbeta and BMP during valvulo-septal endocardial cushion formation. Anat Sci Int. 2009 Sep;84(3):77–87.

    Article  CAS  PubMed  Google Scholar 

  40. Kruithof BP, Duim SN, Moerkamp AT, Goumans MJ. TGFβ and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation. 2012 Jul;84(1):89–102.

    Article  CAS  PubMed  Google Scholar 

  41. Timmerman LA, Grego-Bessa J, Raya A, Bertrán E, Pérez-Pomares JM, Díez J, Aranda S, Palomo S, McCormick F, Izpisúa-Belmonte JC, de la Pompa JL. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004 Jan 1;18(1):99–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. MacGrogan D, D’Amato G, Travisano S, Martinez-Poveda B, Luxán G, Del Monte-Nieto G, Papoutsi T, Sbroggio M, Bou V, Gomez-Del Arco P, Gómez MJ, Zhou B, Redondo JM, Jiménez-Borreguero LJ, de la Pompa JL. Sequential ligand-dependent notch signaling activation regulates valve primordium formation and morphogenesis. Circ Res. 2016 May 13;118(10):1480–97.

    Article  CAS  PubMed  Google Scholar 

  43. Romano LA, Runyan RB. Slug is a mediator of epithelial-mesenchymal cell transformation in the developing chicken heart. Dev Biol. 1999 Aug 1;212(1):243–54.

    Article  CAS  PubMed  Google Scholar 

  44. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000 Feb;2(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  45. Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol. 2008 Jul 28;182(2):315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simeone P, Trerotola M, Franck J, Cardon T, Marchisio M, Fournier I, Salzet M, Maffia M, Vergara D. The multiverse nature of epithelial to mesenchymal transition. Semin Cancer Biol. 2019 Oct;58:1–10.

    Article  PubMed  Google Scholar 

  47. Dor Y, Camenisch TD, Itin A, Fishman GI, McDonald JA, Carmeliet P. Keshet E. A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development. 2001 May;128(9):1531–8.

    Article  CAS  PubMed  Google Scholar 

  48. Stankunas K, Ma GK, Kuhnert FJ, Kuo CJ, Chang CP. VEGF signaling has distinct spatiotemporal roles during heart valve development. Dev Biol. 2010 Nov 15;347(2):325–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chang CP, Neilson JR, Bayle JH, Gestwicki JE, Kuo A, Stankunas K, Graef IA, Crabtree GR. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell. 2004 Sep 3;118(5):649–63.

    Article  CAS  PubMed  Google Scholar 

  50. Wu B, Wang Y, Lui W, Langworthy M, Tompkins KL, Hatzopoulos AK, Baldwin HS, Zhou B. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res. 2011 Jul 8;109(2):183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bischoff J, Casanovas G, Wylie-Sears J, Kim DH, Bartko PE, Guerrero JL, Dal-Bianco JP, Beaudoin J, Garcia ML, Sullivan SM, Seybolt MM, Morris BA, Keegan J, Irvin WS, Aikawa E, Levine RA. CD45 expression in mitral valve endothelial cells after myocardial infarction. Circ Res. 2016 Nov 11;119(11):1215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Hjortnaes J, Beaudoin J, Szymanski C, Bartko PE, Seybolt MM, Handschumacher MD, Sullivan S, Garcia ML, Mauskapf A, Titus JS, Wylie-Sears J, Irvin WS, Chaput M, Messas E, Hagège AA, Carpentier A, Levine RA, Leducq Transatlantic Mitral Network. Myocardial infarction alters adaptation of the tethered mitral valve. J Am Coll Cardiol. 2016 Jan 26;67(3):275–87.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gurumurthy CB, Lloyd KCK. Generating mouse models for biomedical research: technological advances. Dis Model Mech. 2019 Jan 8;12(1):dmm029462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lincoln J, Alfieri CM, Yutzey KE. Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn. 2004 Jun;230(2):239–50.

    Article  CAS  PubMed  Google Scholar 

  55. de Lange FJ, Moorman AF, Anderson RH, Männer J, Soufan AT, de Gier-de Vries C, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM. Lineage and morphogenetic analysis of the cardiac valves. Circ Res. 2004 Sep 17;95(6):645–54.

    Article  PubMed  Google Scholar 

  56. Crucean A, Alqahtani A, Barron DJ, Brawn WJ, Richardson RV, O’Sullivan J, Anderson RH, Henderson DJ, Chaudhry B. Re-evaluation of hypoplastic left heart syndrome from a developmental and morphological perspective. Orphanet J Rare Dis. 2017 Aug 10;12(1):138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Snarr BS, Wirrig EE, Phelps AL, Trusk TC, Wessels A. A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development. Dev Dyn. 2007 May;236(5):1287–94.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Snarr BS, O’Neal JL, Chintalapudi MR, Wirrig EE, Phelps AL, Kubalak SW, Wessels A. Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development. Circ Res. 2007 Nov 9;101(10):971–4.

    Article  CAS  PubMed  Google Scholar 

  59. Männer J, Pérez-Pomares JM, Macías D, Muñoz-Chápuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001;169(2):89–103.

    Article  PubMed  Google Scholar 

  60. Cao Y, Duca S, Cao J. Epicardium in heart development. Cold Spring Harb Perspect Biol. 2020 Feb 3;12(2):a037192.

    Article  CAS  PubMed  Google Scholar 

  61. Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998 Jun 1;82(10):1043–52.

    Article  CAS  PubMed  Google Scholar 

  62. Wessels A, van den Hoff MJ, Adamo RF, Phelps AL, Lockhart MM, Sauls K, Briggs LE, Norris RA, van Wijk B, Perez-Pomares JM, Dettman RW, Burch JB. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol. 2012 Jun 15;366(2):111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lockhart MM, van den Hoff M, Wessels A. The role of the epicardium in the formation of the cardiac valves in the mouse. In: Nakanishi T, Markwald RR, Baldwin HS, Keller BB, Srivastava D, Yamagishi H, editors. Etiology and morphogenesis of congenital heart disease: from gene function and cellular interaction to morphology [Internet]. Tokyo: Springer; 2016.

    Google Scholar 

  64. Vega-Lopez GA, Cerrizuela S, Tribulo C, Aybar MJ. Neurocristopathies: new insights 150 years after the neural crest discovery. Dev Biol. 2018 Dec 1;444(Suppl 1):S110–43.

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the developing valvesand label the cardiac conduction system. Circ Res. 2006 Jun 23;98(12):1547–54.

    Article  CAS  PubMed  Google Scholar 

  66. Hildreth V, Webb S, Bradshaw L, Brown NA, Anderson RH, Henderson DJ. Cells migrating from the neural crest contribute to the innervation of the venous pole of the heart. J Anat. 2008 Jan;212(1):1–11.

    PubMed  PubMed Central  Google Scholar 

  67. Deb A, Wang SH, Skelding K, Miller D, Simper D, Caplice N. Bone marrow-derived myofibroblasts are present in adult human heart valves. J Heart Valve Dis. 2005;14:674–8.

    PubMed  Google Scholar 

  68. Visconti RP, Ebihara Y, LaRue AC, Fleming PA, McQuinn TC, Masuya M, Minamiguchi H, Markwald RR, Ogawa M, Drake CJ. An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ Res. 2006 Mar 17;98(5):690–6.

    Article  CAS  PubMed  Google Scholar 

  69. Anstine LJ, Horne TE, Horwitz EM, Lincoln J. Contribution of extra-cardiac cells in murine heart valves is age-dependent. J Am Heart Assoc. 2017 Oct 20;6(10):e007097.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hulin A, Hortells L, Gomez-Stallons MV, O’Donnell A, Chetal K, Adam M, Lancellotti P, Oury C, Potter SS, Salomonis N, Yutzey KE. Maturation of heart valve cell populations during postnatal remodeling. Development. 2019 Mar 12;146(12):dev173047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shigeta A, Huang V, Zuo J, Besada R, Nakashima Y, Lu Y, Ding Y, Pellegrini M, Kulkarni RP, Hsiai T, Deb A, Zhou B, Nakano H, Nakano A. Endocardially derived macrophages are essential for valvular remodeling. Dev Cell. 2019 Mar 11;48(5):617–630.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hulin A, Anstine LJ, Kim AJ, Potter SJ, DeFalco T, Lincoln J, Yutzey KE. Macrophage transitions in heart valve development and myxomatous valve disease. Arterioscler Thromb Vasc Biol. 2018 Mar;38(3):636–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim AJ, Xu N, Yutzey KE. Macrophage lineages in heart valve development and disease. Cardiovasc Res. 2020 Mar 14:cvaa062. https://doi.org/10.1093/cvr/cvaa062.

  74. Sugi Y, Ito N, Szebenyi G, Myers K, Fallon JF, Mikawa T, Markwald RR. Fibroblast growth factor (FGF)-4 can induce proliferation of cardiac cushion mesenchymal cells during early valve leaflet formation. Dev Biol. 2003 Jun 15;258(2):252–63.

    Article  CAS  PubMed  Google Scholar 

  75. Lincoln J, Kist R, Scherer G, Yutzey KE. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol. 2007 May 1;305(1):120–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shelton EL, Yutzey KE. Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev Biol. 2007 Feb 15;302(2):376–88.

    Article  CAS  PubMed  Google Scholar 

  77. Shelton EL, Yutzey KE. Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol. 2008 May 1;317(1):282–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jackson LF, Qiu TH, Sunnarborg SW, Chang A, Zhang C, Patterson C, Lee DC. Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J. 2003 Jun 2;22(11):2704–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Iwamoto R, Mine N, Kawaguchi T, Minami S, Saeki K, Mekada E. HB-EGF function in cardiac valve development requires interaction with heparan sulfate proteoglycans. Development. 2010 Jul;137(13):2205–14.

    Article  CAS  PubMed  Google Scholar 

  80. Iwamoto R, Mine N, Mizushima H, Mekada E. ErbB1 and ErbB4 generate opposing signals regulating mesenchymal cell proliferation during valvulogenesis. J Cell Sci. 2017 Apr 1;130(7):1321–32.

    CAS  PubMed  Google Scholar 

  81. Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MA Jr, Falb D, Huszar D. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000 Feb;24(2):171–4.

    Article  CAS  PubMed  Google Scholar 

  82. Choi M, Stottmann RW, Yang YP, Meyers EN, Klingensmith J. The bone morphogenetic protein antagonist noggin regulates mammalian cardiac morphogenesis. Circ Res. 2007 Feb 2;100(2):220–8.

    Article  CAS  PubMed  Google Scholar 

  83. Takeda N, Hara H, Fujiwara T, Kanaya T, Maemura S, Komuro I. TGF-β signaling-related genes and thoracic aortic aneurysms and dissections. Int J Mol Sci. 2018 Jul 21;19(7):2125.

    Article  PubMed Central  Google Scholar 

  84. Oosthoek PW, Wenink AC, Macedo AJ, Gittenberger-de Groot AC. The parachute-like asymmetric mitral valve and its two papillary muscles. J Thorac Cardiovasc Surg. 1997 Jul;114(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  85. Oosthoek PW, Wenink AC, Wisse LJ, Gittenberger-de Groot AC. Development of the papillary muscles of the mitral valve: morphogenetic background of parachute-like asymmetric mitral valves and other mitral valve anomalies. J Thorac Cardiovasc Surg. 1998 Jul;116(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  86. Oosthoek PW, Wenink AC, Vrolijk BC, Wisse LJ, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC. Development of the atrioventricular valve tension apparatus in the human heart. Anat Embryol (Berl). 1998 Oct;198(4):317–29.

    Article  CAS  Google Scholar 

  87. Tian X, Li Y, He L, Zhang H, Huang X, Liu Q, Pu W, Zhang L, Li Y, Zhao H, Wang Z, Zhu J, Nie Y, Hu S, Sedmera D, Zhong TP, Yu Y, Zhang L, Yan Y, Qiao Z, Wang QD, Wu SM, Pu WT, Anderson RH, Zhou B. Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat Commun. 2017 Jul 20;8(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lincoln J, Lange AW, Yutzey KE. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol. 2006 Jun 15;294(2):292–302.

    Article  CAS  PubMed  Google Scholar 

  89. de la Pompa JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR, Mak TW. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature. 1998 Mar 12;392(6672):182–6.

    Article  PubMed  Google Scholar 

  90. Lange AW, Yutzey KE. NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev Biol. 2006 Apr 15;292(2):407–17.

    Article  CAS  PubMed  Google Scholar 

  91. Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A, Li F, Ingram DA, Menick D, Field L, Firulli AB, Molkentin JD, Markwald R, Conway SJ. Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res. 2008 Apr 11;102(7):752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Norris RA, Potts JD, Yost MJ, Junor L, Brooks T, Tan H, Hoffman S, Hart MM, Kern MJ, Damon B, Markwald RR, Goodwin RL. Periostin promotes a fibroblastic lineage pathway in atrioventricular valve progenitor cells. Dev Dyn. 2009 May;238(5):1052–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Levay AK, Peacock JD, Lu Y, Koch M, Hinton RB Jr, Kadler KE, Lincoln J. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res. 2008 Oct 24;103(9):948–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Daniela Q, Federica B, Lofaro FD. The biology of vascular calcification. Int Rev Cell Mol Biol. 2020;354:261–353.

    Article  CAS  Google Scholar 

  95. Levine RA, Hagége AA, Judge DP, Padala M, Dal-Bianco JP, Aikawa E, Beaudoin J, Bischoff J, Bouatia-Naji N, Bruneval P, Butcher JT, Carpentier A, Chaput M, Chester AH, Clusel C, Delling FN, Dietz HC, Dina C, Durst R, Fernandez-Friera L, Handschumacher MD, Jensen MO, Jeunemaitre XP, Le Marec H, Le Tourneau T, Markwald RR, Mérot J, Messas E, Milan DP, Neri T, Norris RA, Peal D, Perrocheau M, Probst V, Pucéat M, Rosenthal N, Solis J, Schott JJ, Schwammenthal E, Slaugenhaupt SA, Song JK, Yacoub MH. Leducq Mitral Transatlantic Network. Mitral valve disease—morphology and mechanisms. Nat Rev Cardiol. 2015 Dec;12(12):689–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chakraborty S, Wirrig EE, Hinton RB, Merrill WH, Spicer DB, Yutzey KE. Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Dev Biol. 2010 Nov 1;347(1):167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wirrig EE, Hinton RB, Yutzey KE. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. J Mol Cell Cardiol. 2011 Mar;50(3):561–9.

    Article  CAS  PubMed  Google Scholar 

  98. Wirrig EE, Yutzey KE. Conserved transcriptional regulatory mechanisms in aortic valve development and disease. Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yutzey KE, Demer LL, Body SC, Huggins GS, Towler DA, Giachelli CM, Hofmann-Bowman MA, Mortlock DP, Rogers MB, Sadeghi MM, Aikawa E. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol. 2014 Nov;34(11):2387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997 Mar 6;386(6620):78–81.

    Article  CAS  PubMed  Google Scholar 

  101. van Geemen D, Soares AL, Oomen PJ, Driessen-Mol A, Janssen-van den Broek MW, van den Bogaerdt AJ, Bogers AJ, Goumans MJ, Baaijens FP, Bouten CV. Age-dependent changes in geometry, tissue composition and mechanical properties of fetal to adult cryopreserved human heart valves. PLoS One. 2016 Feb 11;11(2):e0149020.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Monaghan MG, Linneweh M, Liebscher S, Van Handel B, Layland SL, Schenke-Layland K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development. Development. 2016 Feb 1;143(3):473–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hinton RB Jr, Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, Yutzey KE. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006 Jun 9;98(11):1431–8.

    Article  CAS  PubMed  Google Scholar 

  104. Kunzelman KS, Cochran RP, Murphree SS, Ring WS, Verrier ED, Eberhart RC. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J Heart Valve Dis. 1993 Mar;2(2):236–44.

    CAS  PubMed  Google Scholar 

  105. Peacock JD, Lu Y, Koch M, Kadler KE, Lincoln J. Temporal and spatial expression of collagens during murine atrioventricular heart valve development and maintenance. Dev Dyn. 2008 Oct;237(10):3051–8.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tan H, Junor L, Price RL, Norris RA, Potts JD, Goodwin RL. Expression and deposition of fibrous extracellular matrix proteins in cardiac valves during chick development. Microsc Microanal. 2011 Feb;17(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  107. Pagnozzi LA, Butcher JT. Mechanotransduction mechanisms in mitral valve physiology and disease pathogenesis. Front Cardiovasc Med. 2017 Dec 22;4:83.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kyndt F, Gueffet JP, Probst V, Jaafar P, Legendre A, Le Bouffant F, Toquet C, Roy E, McGregor L, Lynch SA, Newbury-Ecob R, Tran V, Young I, Trochu JN, Le Marec H, Schott JJ. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation. 2007 Jan 2;115(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  109. Grande-Allen KJ, Calabro A, Gupta V, Wight TN, Hascall VC, Vesely I. Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology. 2004 Jul;14(7):621–33.

    Article  CAS  PubMed  Google Scholar 

  110. Stephens EH, Durst CA, West JL, Grande-Allen KJ. Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region. Acta Biomater. 2011 Jan;7(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  111. Bosada FM, Devasthali V, Jones KA, Stankunas K. Wnt/β-catenin signaling enables developmental transitions during valvulogenesis. Development. 2016 Mar 15;143(6):1041–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ristori T, Notermans TMW, Foolen J, Kurniawan NA, Bouten CVC, Baaijens FPT, Loerakker S. Modelling the combined effects of collagen and cyclic strain on cellular orientation in collagenous tissues. Sci Rep. 2018 Jun 4;8(1):8518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Durst R, Sauls K, Peal DS, deVlaming A, Toomer K, Leyne M, Salani M, Talkowski ME, Brand H, Perrocheau M, Simpson C, Jett C, Stone MR, Charles F, Chiang C, Lynch SN, Bouatia-Naji N, Delling FN, Freed LA, Tribouilloy C, Le Tourneau T, LeMarec H, Fernandez-Friera L, Solis J, Trujillano D, Ossowski S, Estivill X, Dina C, Bruneval P, Chester A, Schott JJ, Irvine KD, Mao Y, Wessels A, Motiwala T, Puceat M, Tsukasaki Y, Menick DR, Kasiganesan H, Nie X, Broome AM, Williams K, Johnson A, Markwald RR, Jeunemaitre X, Hagege A, Levine RA, Milan DJ, Norris RA, Slaugenhaupt SA. Mutations in DCHS1 cause mitral valve prolapse. Nature. 2015 Sep 3;525(7567):109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Toomer KA, Yu M, Fulmer D, Guo L, Moore KS, Moore R, Drayton KD, Glover J, Peterson N, Ramos-Ortiz S, Drohan A, Catching BJ, Stairley R, Wessels A, Lipschutz JH, Delling FN, Jeunemaitre X, Dina C, Collins RL, Brand H, Talkowski ME, Del Monte F, Mukherjee R, Awgulewitsch A, Body S, Hardiman G, Hazard ES, da Silveira WA, Wang B, Leyne M, Durst R, Markwald RR, Le Scouarnec S, Hagege A, Le Tourneau T, Kohl P, Rog-Zielinska EA, Ellinor PT, Levine RA, Milan DJ, Schott JJ, Bouatia-Naji N, Slaugenhaupt SA, Norris RA. Primary cilia defects causing mitral valve prolapse. Sci Transl Med. 2019 May 22;11(493):eaax0290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fulmer D, Toomer KA, Glover J, Guo L, Moore K, Moore R, Stairley R, Gensemer C, Abrol S, Rumph MK, Emetu F, Lipschutz JH, McDowell C, Bian J, Wang C, Beck T, Wessels A, Renault MA, Norris RA. Desert hedgehog-primary cilia cross talk shapes mitral valve tissue by organizing smooth muscle actin. Dev Biol. 2020 Jul 1;463(1):26–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BC and DJH are funded by the British Heart Foundation Programme Grant RG/19/2/34256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah J. Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhry, B., Henderson, D.J. (2021). Morphogenetic Aspects of Mitral Valve Development. In: Wells, F.C., Anderson, R.H. (eds) Mitral Valve Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-67947-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67947-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67946-0

  • Online ISBN: 978-3-030-67947-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics