Skip to main content

Genetics of Mitral Valve Disease

  • Chapter
  • First Online:
Mitral Valve Disease

Abstract

Mitral valve prolapse (MVP) is a common disorder, with a prevalence of 2–3% in the general population. It is the most common cause of primary mitral regurgitation requiring surgery, making the underlying etiology of this condition of significant interest. As a familial pattern is observed in up to half of cases, much work has sought to determine the underlying heritable components that may contribute to this condition. In this chapter, we focus on the genetics of mitral valve prolapse, providing a broad outline of the loci known to be associated with syndromic and non-syndromic forms of MVP, a historical perspective of how some of these loci came to be identified, and a discussion of how these findings have led to novel frameworks for our understanding of at least subsets of patients with this condition. Elucidating the genetic underpinnings of MVP will further our understanding of the biological basis of this disease, and may allow earlier detection of asymptomatic individuals and prediction of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dziadzko V, Clavel M-A, Dziadzko M, Medina-Inojosa JR, Michelena H, Maalouf J, Nkomo V, Thapa P, Enriquez-Sarano M. Outcome and undertreatment of mitral regurgitation: a community cohort study. Lancet. 2018;391:960–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Delling FN, Rong J, Larson MG, Lehman B, Osypiuk E, Stantchev P, Slaugenhaupt SA, Benjamin EJ, Levine RA, Vasan RS. Familial clustering of mitral valve prolapse in the community. Circulation. 2015;131:263–8.

    Article  PubMed  Google Scholar 

  3. Delling FN, Li X, Li S, et al. Heritability of mitral regurgitation: observations from the framingham heart study and Swedish population. Circ Cardiovasc Genet. 2017; https://doi.org/10.1161/CIRCGENETICS.117.001736.

  4. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19:212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118:1864–80.

    Article  PubMed  Google Scholar 

  6. Tamura K, Fukuda Y, Ishizaki M, Masuda Y, Yamanaka N, Ferrans VJ. Abnormalities in elastic fibers and other connective-tissue components of floppy mitral valve. Am Heart J. 1995;129:1149–58.

    Article  CAS  PubMed  Google Scholar 

  7. Grande-Allen KJ, Griffin BP, Calabro A, Ratliff NB, Cosgrove DM 3rd, Vesely I. Myxomatous mitral valve chordae. II: Selective elevation of glycosaminoglycan content. J Heart Valve Dis. 2001;10:325–32. discussion 332–3

    CAS  PubMed  Google Scholar 

  8. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104:2525–32.

    Article  CAS  PubMed  Google Scholar 

  9. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. N Engl J Med. 2000;342:1350–8.

    Article  CAS  PubMed  Google Scholar 

  10. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kainulainen K, Pulkkinen L, Savolainen A, Kaitila I, Peltonen L. Location on chromosome 15 of the gene defect causing Marfan syndrome. N Engl J Med. 1990;323:935–9.

    Article  CAS  PubMed  Google Scholar 

  12. Dietz HC, Cutting GR, Pyeritz RE, et al. Defects in the fibrillin gene cause the Marfan syndrome; linkage evidence and identification of a missense mutation. Nature. 1991;352:337–9.

    Article  CAS  PubMed  Google Scholar 

  13. Judge DP, Dietz HC. Marfan’s syndrome. Lancet. 2005;366:1965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. ten Dijke P, Arthur HM. Extracellular control of TGFβ signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8:857–69.

    Article  PubMed  Google Scholar 

  15. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.

    Article  CAS  PubMed  Google Scholar 

  16. Pyeritz RE, Wappel MA. Mitral valve dysfunction in the Marfan syndrome. Clinical and echocardiographic study of prevalence and natural history. Am J Med. 1983;74:797–807.

    Article  CAS  PubMed  Google Scholar 

  17. Hirata K, Triposkiadis F, Sparks E, Bowen J, Boudoulas H, Wooley CF. The Marfan syndrome: cardiovascular physical findings and diagnostic correlates. Am Heart J. 1992;123:743–52.

    Article  CAS  PubMed  Google Scholar 

  18. van Karnebeek CD, Naeff MS, Mulder BJ, Hennekam RC, Offringa M. Natural history of cardiovascular manifestations in Marfan syndrome. Arch Dis Child. 2001;84:129–37.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Porciani MC, Attanasio M, Lepri V, Lapini I, Demarchi G, Padeletti L, Pepe G, Abbate R, Gensini GF. Prevalence of cardiovascular manifestations in Marfan syndrome. Ital Heart J Suppl. 2004;5:647–52.

    PubMed  Google Scholar 

  20. Taub CC, Stoler JM, Perez-Sanz T, Chu J, Isselbacher EM, Picard MH, Weyman AE. Mitral valve prolapse in Marfan syndrome: an old topic revisited. Echocardiography. 2009;26:357–64.

    Article  PubMed  Google Scholar 

  21. Ng CM, Cheng A, Myers LA, et al. TGF-β–dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004;114:1586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van der Linde D. Aggressive cardiovascular phenotype of aneurysms-osteoarthritis syndrome caused by pathogenic SMAD3 variants. J Am Coll Cardiol. 2012;60(5):397–403.

    Article  PubMed  Google Scholar 

  23. Attias D, Stheneur C, Roy C, et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in marfan syndrome and related disorders. Circulation. 2009;120:2541–9.

    Article  CAS  PubMed  Google Scholar 

  24. Rienhoff HY Jr, Yeo C-Y, Morissette R, et al. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal arthrogryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am J Med Genet A. 2013;161A:2040–6.

    Article  PubMed  Google Scholar 

  25. MacCarrick G, Black JH, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrerio PA, Guerrerio AL, Sponseller PD, Loeys B, Dietz HC. Loeys–Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16:576–87.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuechler A, Altmüller J, Nürnberg P, Kotthoff S, Kubisch C, Borck G. Exome sequencing identifies a novel heterozygous TGFB3 mutation in a disorder overlapping with Marfan and Loeys-Dietz syndrome. Mol Cell Probes. 2015;29:330–4.

    Article  CAS  PubMed  Google Scholar 

  27. Andrabi S, Bekheirnia MR, Robbins-Furman P, Lewis RA, Prior TW, Potocki L. SMAD4 mutation segregating in a family with juvenile polyposis, aortopathy, and mitral valve dysfunction. Am J Med Genet A. 2011;155A:1165–9.

    Article  PubMed  Google Scholar 

  28. Malfait F, Wenstrup RJ, De Paepe A. Clinical and genetic aspects of Ehlers-Danlos syndrome, classic type. Genet Med. 2010;12:597–605.

    Article  PubMed  Google Scholar 

  29. Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C: Semin Med Genet. 2017;175:8–26.

    Article  Google Scholar 

  30. Atzinger CL, Meyer RA, Khoury PR, Gao Z, Tinkle BT. Cross-sectional and longitudinal assessment of aortic root dilation and valvular anomalies in hypermobile and classic Ehlers-Danlos syndrome. J Pediatr. 2011;158:826–830.e1.

    Article  PubMed  Google Scholar 

  31. Asher SB, Chen R, Kallish S. Mitral valve prolapse and aortic root dilation in adults with hypermobile Ehlers-Danlos syndrome and related disorders. Am J Med Genet A. 2018;176:1838–44.

    Article  PubMed  Google Scholar 

  32. Lebwohl MG, Distefano D, Prioleau PG, Uram M, Yannuzzi LA, Fleischmajer R. Pseudoxanthoma elasticum and mitral-valve prolapse. N Engl J Med. 1982;307:228–31.

    Article  CAS  PubMed  Google Scholar 

  33. Baasanjav S, Al-Gazali L, Hashiguchi T, et al. Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Hum Genet. 2011;89:15–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Collins RT, Thomas Collins R. Cardiovascular disease in Williams syndrome. Circulation. 2013;127:2125–34.

    Article  PubMed  Google Scholar 

  35. Prunier F, Terrien G, Le Corre Y, et al. Pseudoxanthoma elasticum: cardiac findings in patients and Abcc6-deficient mouse model. PLoS One. 2013;8:e68700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pierpont ME, Basson CT, Benson DW Jr, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38.

    Article  PubMed  Google Scholar 

  37. Van Praagh S, Truman T, Firpo A, Bano-Rodrigo A, Fried R, McManus B, Engle MA, Van Praagh R. Cardiac malformations in trisomy-18: a study of 41 postmortem cases. J Am Coll Cardiol. 1989;13:1586–97.

    Article  PubMed  Google Scholar 

  38. Musewe NN, Alexander DJ, Teshima I, Smallhorn JF, Freedom RM. Echocardiographic evaluation of the spectrum of cardiac anomalies associated with trisomy 13 and trisomy 18. J Am Coll Cardiol. 1990;15:673–7.

    Article  CAS  PubMed  Google Scholar 

  39. Fricke GR, Mattern HJ, Schweikert HU. Mitral valve prolapse in Klinefelter syndrome. Lancet. 1981;2:1414.

    Article  CAS  PubMed  Google Scholar 

  40. Fricke GR, Mattern HJ, Schweikert HU, Schwanitz G. Klinefelter’s syndrome and mitral valve prolapse. an echocardiographic study in twenty-two patients. Biomed Pharmacother. 1984;38:88–97.

    CAS  PubMed  Google Scholar 

  41. Andersen NH, Bojesen A, Kristensen K, Birkebaek NH, Fedder J, Bennett P, Christiansen JS, Gravholt CH. Left ventricular dysfunction in Klinefelter syndrome is associated to insulin resistance, abdominal adiposity and hypogonadism. Clin Endocrinol. 2008;69:785–91.

    Article  CAS  Google Scholar 

  42. Pasquali D, Arcopinto M, Renzullo A, et al. Cardiovascular abnormalities in Klinefelter syndrome. Int J Cardiol. 2013;168:754–9.

    Article  PubMed  Google Scholar 

  43. van der Linde D, Konings EEM, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJM, Roos-Hesselink JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.

    Article  PubMed  Google Scholar 

  44. Agarwal A, Harris IS, Mahadevan VS, Foster E. Coexistence of abnormal systolic motion of mitral valve in a consecutive group of 324 adult Tetralogy of Fallot patients assessed with echocardiography. Open Heart. 2016;3:e000518.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Devereux RB. Inheritance of mitral valve prolapse: effect of age and sex on gene expression. Ann Intern Med. 1982;97:826.

    Article  CAS  PubMed  Google Scholar 

  46. Zuppiroli A, Roman MJ, O’Grady M, Devereux RB. A family study of anterior mitral leaflet thickness and mitral valve prolapse. Am J Cardiol. 1998;82(823–6):A10.

    Google Scholar 

  47. Delling FN, Vasan RS. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation. 2014;129:2158–70.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fornes P, Heudes D, Fuzellier JF, Tixier D, Bruneval P, Carpentier A. Correlation between clinical and histologic patterns of degenerative mitral valve insufficiency: a histomorphometric study of 130 excised segments. Cardiovasc Pathol. 1999;8:81–92.

    Article  CAS  PubMed  Google Scholar 

  49. Monteleone PL, Fagan LF. Possible X-linked congenital heart disease. Circulation. 1969;39:611–4.

    Article  CAS  PubMed  Google Scholar 

  50. Kyndt F, Schott JJ, Trochu JN, et al. Mapping of X-linked myxomatous valvular dystrophy to chromosome Xq28. Am J Hum Genet. 1998;62:627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trochu JN, Kyndt F, Schott JJ, Gueffet JP, Probst V, Bénichou B, Le Marec H. Clinical characteristics of a familial inherited myxomatous valvular dystrophy mapped to Xq28. J Am Coll Cardiol. 2000;35:1890–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kyndt F, Gueffet J-P, Probst V, et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation. 2007;115:40–9.

    Article  CAS  PubMed  Google Scholar 

  53. Shizuta Y, Shizuta H, Gallo M, Davies P, Pastan I. Purification and properties of filamin, and actin binding protein from chicken gizzard. J Biol Chem. 1976;251:6562–7.

    Article  CAS  PubMed  Google Scholar 

  54. Kim H, Sengupta A, Glogauer M, McCulloch CA. Filamin A regulates cell spreading and survival via beta1 integrins. Exp Cell Res. 2008;314:834–46.

    Article  CAS  PubMed  Google Scholar 

  55. Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K. Filamin Associates with Smads and Regulates Transforming Growth Factor-β Signaling. J Biol Chem. 2001;276:17871–7.

    Article  CAS  PubMed  Google Scholar 

  56. Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F, Kwiatkowski DJ, Walsh CA. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci U S A. 2006;103:19836–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hart AW, Morgan JE, Schneider J, West K, McKie L, Bhattacharya S, Jackson IJ, Cross SH. Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet. 2006;15:2457–67.

    Article  CAS  PubMed  Google Scholar 

  58. Norris RA, Moreno-Rodriguez R, Wessels A, et al. Expression of the familial cardiac valvular dystrophy gene, filamin-A, during heart morphogenesis. Dev Dyn. 2010;239:2118–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sauls K, de Vlaming A, Harris BS, et al. Developmental basis for filamin-A-associated myxomatous mitral valve disease. Cardiovasc Res. 2012;96:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Freed LA, Acierno JS Jr, Dai D, Leyne M, Marshall JE, Nesta F, Levine RA, Slaugenhaupt SA. A locus for autosomal dominant mitral valve prolapse on chromosome 11p15.4. Am J Hum Genet. 2003;72:1551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Durst R, Sauls K, Peal DS, et al. Mutations in DCHS1 cause mitral valve prolapse. Nature. 2015;525:109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matis M, Axelrod JD. Regulation of PCP by the Fat signaling pathway. Genes Dev. 2013;27:2207–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development. 2011;138:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nesta F, Leyne M, Yosefy C, Simpson C, Dai D, Marshall JE, Hung J, Slaugenhaupt SA, Levine RA. New locus for autosomal dominant mitral valve prolapse on chromosome 13: clinical insights from genetic studies. Circulation. 2005;112:2022–30.

    Article  PubMed  Google Scholar 

  65. Toomer KA, Yu M, Fulmer D, et al. Primary cilia defects causing mitral valve prolapse. Sci Transl Med. 2019; https://doi.org/10.1126/scitranslmed.aax0290.

  66. Disse S, Abergel E, Berrebi A, Houot AM, Le Heuzey JY, Diebold B, Guize L, Carpentier A, Corvol P, Jeunemaitre X. Mapping of a first locus for autosomal dominant myxomatous mitral-valve prolapse to chromosome 16p11.2–p12.1. Am J Hum Genet. 1999;65:1242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.

    Article  CAS  PubMed  Google Scholar 

  68. Dina C, Bouatia-Naji N, Tucker N, et al. Genetic association analyses highlight biological pathways underlying mitral valve prolapse. Nat Genet. 2015;47:1206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu M, Georges A, Tucker NR, et al. Genome-wide association study–driven gene-set analyses, genetic, and functional follow-up suggest GLIS1 as a susceptibility gene for mitral valve prolapse. Circ Genom Precis Med. 2019; https://doi.org/10.1161/circgen.119.002497.

  70. Satir P, Pedersen LB, Christensen ST. The primary cilium at a glance. J Cell Sci. 2010;123:499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. 2019;15:199–219.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hossack KF, Leddy CL, Johnson AM, Schrier RW, Gabow PA. Echocardiographic findings in autosomal dominant polycystic kidney disease. N Engl J Med. 1988;319:907–12.

    Article  CAS  PubMed  Google Scholar 

  73. Ivy DD, Shaffer EM, Johnson AM, Kimberling WJ, Dobin A, Gabow PA. Cardiovascular abnormalities in children with autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 1995;5:2032–6.

    Article  CAS  PubMed  Google Scholar 

  74. Lumiaho A, Ikäheimo R, Miettinen R, Niemitukia L, Laitinen T, Rantala A, Lampainen E, Laakso M, Hartikainen J. Mitral valve prolapse and mitral regurgitation are common in patients with polycystic kidney disease type 1. Am J Kidney Dis. 2001;38:1208–16.

    Article  CAS  PubMed  Google Scholar 

  75. Li Y, Klena NT, Gabriel GC, et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature. 2015;521:520–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adams M, Simms RJ, Abdelhamed Z, et al. A meckelin-filamin A interaction mediates ciliogenesis. Hum Mol Genet. 2012;21:1272–86.

    Article  CAS  PubMed  Google Scholar 

  77. Yasuoka Y, Matsumoto M, Yagi K, Okazaki Y. Evolutionary history of GLIS genes illuminates their roles in cell reprogramming and ciliogenesis. Mol Biol Evol. 2020;37:100–9.

    Article  CAS  PubMed  Google Scholar 

  78. van Wijngaarden AL, Hiemstra YL, Koopmann TT, Ruivenkamp CAL, Aten E, Schalij MJ, Bax JJ, Delgado V, Barge-Schaapveld DQCM, Ajmone Marsan N. Identification of known and unknown genes associated with mitral valve prolapse using an exome slice methodology. J Med Genet. 2020; https://doi.org/10.1136/jmedgenet-2019-106715.

  79. Levine RA, Handschumacher MD, Sanfilippo AJ, Hagege AA, Harrigan P, Marshall JE, Weyman AE. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989;80:589–98.

    Article  CAS  PubMed  Google Scholar 

  80. Perloff JK, Child JS. Mitral valve prolapse. Evolution and refinement of diagnostic techniques. Circulation. 1989;80:710–1.

    Article  CAS  PubMed  Google Scholar 

  81. Li L, Bainbridge MN, Tan Y, Willerson JT, Marian AJ. A potential oligogenic etiology of hypertrophic cardiomyopathy. Circ Res. 2017;120:1084–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gifford CA, Ranade SS, Samarakoon R, et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science. 2019;364:865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466:714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gupta RM, Hadaya J, Trehan A, et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell. 2017;170:522–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nishimura RA, McGoon MD, Shub C, Miller FA, Ilstrup DM, Jamil Tajik A. Echocardiographically documented mitral-valve prolapse. N Engl J Med. 1985;313:1305–9.

    Article  CAS  PubMed  Google Scholar 

  86. Zipes DP, Wellens HJJ. Sudden cardiac death. Circulation. 1998;98:2334–51.

    Article  CAS  PubMed  Google Scholar 

  87. Kligfield P, Levy D, Devereux RB, Savage DD. Arrhythmias and sudden death in mitral valve prolapse. Am Heart J. 1987;113:1298–307.

    Article  CAS  PubMed  Google Scholar 

  88. Vohra J, Sathe S, Warren R, Tatoulis J, Hunt D. Malignant ventricular arrhythmias in patients with mitral valve prolapse and mild mitral regurgitation. Pacing Clin Electrophysiol. 1993;16:387–93.

    Article  CAS  PubMed  Google Scholar 

  89. Bains S, Tester DJ, Asirvatham SJ, Noseworthy PA, Ackerman MJ, Giudicessi JR. A novel truncating variant in FLNC-encoded filamin C may serve as a proarrhythmic genetic substrate for arrhythmogenic bileaflet mitral valve prolapse syndrome. Mayo Clin Proc. 2019;94:906–13.

    Article  PubMed  Google Scholar 

  90. Ortiz-Genga MF, Cuenca S, Dal Ferro M, et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol. 2016;68:2440–51.

    Article  CAS  PubMed  Google Scholar 

  91. Begay RL, Graw SL, Sinagra G, et al. Filamin C truncation mutations are associated with arrhythmogenic dilated cardiomyopathy and changes in the cell–cell adhesion structures. J Am Coll Cardiol EP. 2018;4:504–14.

    Google Scholar 

  92. Valdés-Mas R, Gutiérrez-Fernández A, Gómez J, et al. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat Commun. 2014; https://doi.org/10.1038/ncomms6326.

  93. Brodehl A, Ferrier RA, Hamilton SJ, et al. Mutations in FLNC are associated with familial restrictive cardiomyopathy. Hum Mutat. 2016;37:269–79.

    Article  CAS  PubMed  Google Scholar 

  94. Tucker NR, McLellan MA, Hu D, et al. Novel mutation in FLNC (Filamin C) causes familial restrictive cardiomyopathy. Circ Cardiovasc Genet. 2017; https://doi.org/10.1161/CIRCGENETICS.117.001780.

  95. Kiselev A, Vaz R, Knyazeva A, et al. De novo mutations in FLNC leading to early-onset restrictive cardiomyopathy and congenital myopathy. Hum Mutat. 2018;39:1161–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Nesta Delling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padmanabhan, A., Delling, F.N. (2021). Genetics of Mitral Valve Disease. In: Wells, F.C., Anderson, R.H. (eds) Mitral Valve Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-67947-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67947-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67946-0

  • Online ISBN: 978-3-030-67947-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics