Skip to main content

AE in Ceramics and Ceramic Matrix Composites

  • Chapter
  • First Online:
Acoustic Emission Testing

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 2038 Accesses

Abstract

The paper focuses on the damage monitoring and identification on ceramics or ceramic matrix composites even at very high temperature up to 1500 °C. Two approaches based on two complementary analyses of acoustic activity are presented: (1) an individual analysis of the signals: the objective of this analysis is to associate each EA signal with the generated damage mechanism. This allows, in real time, to quantify its severity. (2) a collective analysis of all the collected signals. The idea is to predict the lifetime of a component in service. Several damage indicators are defined, based on acoustic energy. These indicators highlight critical times or characteristic times allowing an evaluation of the remaining lifetime. In many cases, the interpretation of data measured by Acoustic Emission (AE) techniques is based on empirical correlations between the characteristics of the source and the measured signal. This main limitation is discussed at the end of the chapter and the interest of modelling works is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panda PK, Kannan TS, Dubois J, Olagnon C, Fantozzi G (2002) Thermal shock and thermal fatigue study of alumina. J Eur Ceram Soc 22(13):2187–2196

    Article  Google Scholar 

  2. Hamidouche M, Bouaouadja N, Olagnon C, Fantozzi G (2003) Thermal shock behaviour of mullite ceramic. Ceram Int 29(6):599–609

    Article  Google Scholar 

  3. Evans AG, Linzer M (1973) Failure prediction in structural ceramics using acoustic emission. J Am Ceram So 56:575

    Google Scholar 

  4. Evans AG, Linzer M, Johnson H, Hasselman DPH, Kipp ME (1975) Thermal fracture studies in ceramic systems using an acoustic emission technique. J Mater Sci 10(9):1608–1615

    Article  Google Scholar 

  5. Hamstad MA, Thompson PM, Young RD (1987) Flaw growth in alumina studied by acoustic emission. J Acoustic Emission 6(2):93–97

    Google Scholar 

  6. Drozdov AV (2014) Investigation of the microcracking of ceramic materials using the acoustic emission method. Strength Mater 46(1):71–79

    Article  Google Scholar 

  7. Kim RY, Pagaon NJ (1991) Crack initiation in unidirectional brittle matrix composites. J Am Ceram Soc 74(5):1082–1090

    Article  Google Scholar 

  8. Luo Y-J, Chang S-C, Daniel IM (1995) Acoustic emission study of failure mechanisms in ceramic matrix composites under longitudinal tensile loading. J Compos Mater 29:1946–1961

    Article  Google Scholar 

  9. Surgeon M, Vanswijgenhoven E, Wevers M, Van Der Biest O (1997) Acoustic emission during tensile testing of SiC-fibre-reinforced BMAS glass-ceramic composites. Compos A 28A:473–480

    Article  Google Scholar 

  10. Morscher GN (2000) Modal acoustic emission source determination in silicon carbide matrix composites. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation CP 509. American Institute of Physics, pp 383–390

    Google Scholar 

  11. Morscher GN, Godin N (2014) Use of acoustic emission for ceramic matrix composites. Wiley, pp 569–590

    Google Scholar 

  12. Godin N, Reynaud P, R’Mili M, Fantozzi G (2016) Mechanical behaviour of ceramic matrix composite and lifetime prediction by acoustic emission. In: Paulo Davim J (ed) Ceramic matrix composites. Published by De Gruyter, pp 1–37

    Google Scholar 

  13. Nikol’skii SG, Stepanyants TS (1994) Acoustic emission inspection of the strength of ceramics. Strength Mater 26(2):157–161

    Google Scholar 

  14. Drozdov AV, Galenko VO, Gogotsi GA, Swain MV (1991) Acoustic emission during micro- and macrocrack growth in Mg-PSZ. J Am Ceram Soc 8:1922–1927

    Article  Google Scholar 

  15. Evans AG, Langdon TG (1976) Struct Ceram. Pergamon Press

    Google Scholar 

  16. Papargyris AD, Cooke RG, Papargyri SA, Botis AI (2001) The acoustic behaviour of bricks in relation to their mechanical behaviour. Constr Build Mater 15(7):361–369

    Article  Google Scholar 

  17. Kaya F (2007) Damage assessment of oxide fibre reinforced oxide ceramic matrix composites using acoustic emission. Ceram Int 33(2):279–284

    Google Scholar 

  18. Godin N, Reynaud P, Fantozzi G (2018) Challenges and limitations in the identification of acoustic emission signature of damage mechanisms in composites materials. Appl Sci 8(8):1267

    Google Scholar 

  19. Watanabe M, Enoki M, Kishi T (2003) Fracture behavior of ceramic coatings during thermal cycling evaluated by acoustic emission method using laser interferometers. Mater Sci Eng A359:368/374

    Google Scholar 

  20. Ito K, Enoki M (2007) Acquisition and analysis of continuous acoustic emission waveform for classification of damage sources in ceramic fibre. Mat Mater Trans 48(6):1221–1226

    Google Scholar 

  21. Yu FE, Okabe YE (2017) Fibre-optic sensor-based remote acoustic emission measurement in a 1000 °C environment. Sensors 17(12):14

    Google Scholar 

  22. Kirk KJ, Scheit CW, Schmarje N (2007) High-temperature acoustic emission tests using lithium niobate piezocomposite transducers. Non-Destruct Test Cond Monitor 49(3):142–145

    Article  Google Scholar 

  23. Aué J, De Hosson JTM (1998) A study of the mechanical properties of highly porous ceramics using acoustic emission. J Mater Sci 33(22):5455–5462

    Article  Google Scholar 

  24. Chotard T, Quet A, Ersen A, Smith A (2006) Application of the acoustic emission technique to characterise liquid transfer in a porous ceramic during drying. J Eur Ceram Soc 26:1075–1084

    Article  Google Scholar 

  25. Mamalimov RI, SinaniA AB, Chmel E, Shcherbakov IP (2013) Initiation of impact fracture in SiO2 ceramics. Tech Phys 58(10):1453–1458

    Google Scholar 

  26. Shiwa M, Chen OY, Kishi T, Carpenter S, Mitsuno S, Ichikawa H, Tae LY, Kim ST, Lee TK (1995) Fracture mechanisms in unnotched and notched SiC/SiC composites studied by acoustic emission analysis. Mater Trans 36(4):511–517

    Article  Google Scholar 

  27. Maillet E, Singhal A, Hilmas A, Gao Y, Zhou Y, Henson G, Wilson G (2019) Combining in-situ synchrotron X-ray microtomography and acoustic emission to characterize damage evolution in ceramic matrix composites. J Eur Ceram Soc 39(13):3546–3556

    Article  Google Scholar 

  28. Morscher GN, Maxwell R (2019) Monitoring tensile fatigue crack growth and fibre failure around a notch in laminate SIC/SIC composites utilizing acoustic emission, electrical resistance, and digital image correlation. J Eur Ceram Soc 39(2–3):229–239

    Article  Google Scholar 

  29. Dassios K, Kordatos E, Aggelis D, Matikas T (2014) Crack growth monitoring in ceramic matrix composites by combined infrared thermography and acoustic emission. J Am Ceram Soc 97:251–257

    Article  Google Scholar 

  30. Mei H, Sun Y, Zhang L, Wang H, Cheng L (2013) Acoustic emission characterization of fracture toughness for fibre reinforced ceramic matrix composites. Mater Sci Eng, A 560:372–376

    Article  Google Scholar 

  31. Morscher GN (1999) Modal acoustic emission of damage accumulation in a woven SiC/SiC composite. Compos Sci Technol 59:687–697

    Article  Google Scholar 

  32. Legin B, Aboura Z, Bouillon F, Denneulin S (2018) Damage analysis in 3D woven SiC/SiC ceramic matrix composite. Ceram Trans 263:261–271

    Google Scholar 

  33. Ono K, Huang Q (1994) Pattern recognition analysis of acoustic emission signals. Progress. In: Acoustic emission VII, The Japanese Society for NDI, pp 69–78

    Google Scholar 

  34. Anastassopoulos AA, Philippidis TP (1995) Clustering methodology for the evaluation of acoustic emission from composites. J Acoust Emission 13:1–22

    Google Scholar 

  35. Kostosopoulos V, Loutas TH, Kontsos A, Sotiriadis G, Pappas YZ (2003) On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission. NDT E Int 36:571–580

    Article  Google Scholar 

  36. Pappas YZ, Kontsos A, Loutas TH, Kostosopoulos V (1998) Failure mechanisms analysis of 2D carbon/carbon using acoustic emission monitoring. NDT E Int 31:571–580

    Google Scholar 

  37. Sause MGR, Gribov A, Unwin AR, Horn S (2012) Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recogn Lett 33:17–23

    Article  Google Scholar 

  38. Alia A, Fantozzi G, Godin N, Osmani H, Reynaud P (2019) Mechanical behaviour of jute fibre-reinforced polyester composite: characterisation of damage mechanisms using Acoustic Emission and microstructural observations. J Compos Mater 53(24):3377–3394

    Article  Google Scholar 

  39. Godin N, Reynaud P, Fantozzi G (2018) Acoustic emission and durability of composites materials. Book published by ISTE-Wiley editions, N° ISBN: 9781786300195

    Google Scholar 

  40. Lataste E, Erauw JP, Olagnon C, Fantozzi G (2009) Microstructural and mechanical consequences of thermal cycles on a high zirconia fuse-cast refractory. J Eur Ceram Soc 587–594

    Google Scholar 

  41. Yeugo FE, Huger M, Gault C (2007) Elastic properties and microstructure: study of two fused cast refractory materials. J Eur Ceram Soc 1843–1848

    Google Scholar 

  42. Patapy C, Gault C, Huger M, Chotard T (2009) Acoustic characterization and microstructure of high zirconia electrofused refractories. J Eur Ceram Soc 3355–3362

    Google Scholar 

  43. Patapy C, Proust A, Marlot D, Huger M, Chotard T (2010) Characterization by acoustic emission pattern recognition of microstructure evolution in a fused-cast refractory during high temperature cycling. J Eur Ceram Soc 30:3093–3101

    Article  Google Scholar 

  44. Sibil A, Erauw JP, Cambier F, R’Mili M, Godin N, Fantozzi G (2009) Study of damage of high zirconia fused-cast refractories by measurement of Young’s modulus. Mater Sci Eng A 221–223

    Google Scholar 

  45. Sibil A, Douillard T, Cayron C, Godin N, R’mili M, Fantozzi G (2011) Microcracking of high zirconia refractories after t → m phase transition during cooling: an EBSD study. J Eur Ceram Soc 31(9):1525–1531

    Google Scholar 

  46. Lataste E (2005) Comportement mécanique et endommagement de réfractaires électrofondus sous sollicitation thermomécanique. INSA Lyon, France

    Google Scholar 

  47. Sibil A (2011) Endommagement thermomécanique et rupture de réfractaires verriers à très haute teneur en zircone. INSA Lyon, France

    Google Scholar 

  48. Sibil A, Godin N, R’Mili M, Maillet E, Fantozzi G (2012) Optimization of acoustic emission data clustering by a genetic algorithm method. J Nondestr Eval 31(2):169–180

    Article  Google Scholar 

  49. Godin N, Reynaud P, R’Mili M, Fantozzi G (2017) Identification of damage mechanisms with acoustic emission monitoring: interests and limitations. In: Pappalettera G, Barile C (ed) Focus on acoustic emission research. Published by Nova Science Publishers

    Google Scholar 

  50. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1:224–227

    Article  Google Scholar 

  51. Rousseeuw PJ (1978) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  MATH  Google Scholar 

  52. R’Mili M, Bouchaour T, Merle P (1996) Estimation of Weibull parameters from loose-bundle tests. Comp Sci Technol 56:831–834

    Article  Google Scholar 

  53. Lissart N, Lamon J (1997) Statistical analysis of failure of SiC fibres in the presence of bimodal flaw populations. J Mat Sci 32(22):6107–6117

    Article  Google Scholar 

  54. R’Mili M, Godin N, Lamon J (2012) Flaw strength distributions and statistical parameters for ceramic fibres: the Normal distribution. Phys Rev E 85:1106–1112

    Google Scholar 

  55. R’Mili M, Massardier V, Merle P, Vincent H, Vincent C (1999) The effect of thermal exposure on the strength distribution of B4C-coated carbon fibres. Carbon 37:129–145

    Article  Google Scholar 

  56. R’Mili M, Moevus M, Godin N (2008) Statistical fracture of E-glass fibres using a bundle tensile test and acoustic emission monitoring. Comp Sci Tech 68:1800–1808

    Article  Google Scholar 

  57. Hamstad MA (1986) A review - acoustic emission, a tool for composite materials studies. Exp Mech 26:7–13

    Article  Google Scholar 

  58. Hamstad MA, Moore RL (1986) Acoustic emission from single and multiple Kevlar 49 filament breaks. J Comp Mater 20:46–66

    Article  Google Scholar 

  59. Hill R, Okoroafor EU (1995) Weibull statistics of fibre bundle failure using mechanical and acoustical emission testing: the influence of interfibre friction. Composites 26:699–705

    Article  Google Scholar 

  60. Pappas YZ, Kontsos A, Loutas TH, Kostopoulos V (2004) On the characterization of continuous fibres fracture by quantifying acoustic emission and acousto-ultrasonic waveforms. NDT and E Int 37(5):389–401

    Article  Google Scholar 

  61. Okoroafor EU, Hill R (1995) Investigation of complex failure modes in fibre bundles during dynamic mechanical testing using acoustic emission and Weibull statistics. J Mater Sci 30:4233–4243

    Article  Google Scholar 

  62. Cowking A, Attou A, Siddiki AM, Sweet MAS (1991) Testing E-glass fibre bundle using acoustic emission. J Mater Sci 26:1301–1310

    Article  Google Scholar 

  63. Guel N (2018) Comportement mécanique de composites oxydes: relations procédé-microstructure-propriétés. INSA Lyon, France

    Google Scholar 

  64. Fantozzi G, Reynaud P. Mechanical behaviour of SiC fibre reinforced ceramic matrix composites Chapter Comprehensive hard materials. V.K. Sarin. Elsevier pp 345–366

    Google Scholar 

  65. Lamon J (2014) Approach to microstructure-behavior relationships for ceramic matrix composites reinforced by continuous fibres. In: Bansal NP, Lamon J (eds) Chapter 18 in ceramics matrix composites. Willey, pp 520–547

    Google Scholar 

  66. Quémard L, Rebillat F, Guette A, Tawil H, Louchet-Pouillerie C (2007) Self-healing mechanisms of a SiC fibre reinforced multi-layered ceramic matrix composite in high pressure steam environments. J Eur Ceram Soc 27:2085–2094

    Article  Google Scholar 

  67. Jacques S (2014) Ceramix matrix microcomposites prepared by P-RCVD within the (Ti-Si-B-C) system. Ceram Trans 248:91

    Article  Google Scholar 

  68. Lissart N, Lamon J (1997) Damage and failure in ceramic matrix composites: experimental study and model. Acta Mater 45(3):1025–1044

    Article  Google Scholar 

  69. Gauthier W, Lamon J (2009) Delayed failure of Hi-Nicalon and Hi-Nicalon S multifilament tows and single filaments at intermediate temperatures. J Am Ceram Soc 92(3):702–709

    Article  Google Scholar 

  70. Naslain RR (2016) SiC-matrix composites: tough ceramics for thermostructural, application in different fields. Eng Ceram Curr Status Future 142–159

    Google Scholar 

  71. Godin N, Reynaud P, Fantozzi G (2019) Contribution of AE analysis in order to evaluate time to failure of ceramic matrix composites. Eng Fract Mech 210(1):452–469

    Article  Google Scholar 

  72. Godin N, Reynaud P, R’Mili M, Fantozzi G (2016) Identification of a critical time with acoustic emission monitoring during static fatigue tests on ceramic matrix composites: towards lifetime prediction. Appl Sci 6(2):43

    Google Scholar 

  73. Moevus M, Rouby D, Godin N, R’Mili M, Reynaud P, Fantozzi G, Farizy G (2008) Analysis of damage mechanisms and associated acoustic emission in two SiC/[Si-B-C] composites exhibiting different tensile behaviours. Part I: damage patterns and acoustic emission activity. Compos Sci Technol 68:1250–1257

    Article  Google Scholar 

  74. Maillet E, Godin N, R’Mili M, Reynaud P, Fantozzi G, Lamon J (2014) Damage monitoring and identification in SiC/SiC minicomposites using combined acousto-ultrasonics and acoustic emission. Comp: Part A 57:8–15

    Google Scholar 

  75. Racle E, Godin N, Reynaud P, R’Mili M, Fantozzi G, Marcin L, Herb V, Bouillon F, Kaminski M (2014) Indicator for the damage evolution of a SiC/ (Si-B-C) composite subjected to cyclic and static loading at 450 °C. Mech Prop Perform Eng Ceram Compos, Willey, pp 15–26

    Google Scholar 

  76. Momon S, Moevus M, Godin N, R’Mili M, Reynaud P, Fantozzi G, Fayolle G (2010) Acoustic emission and lifetime prediction during static fatigue tests on ceramic matrix composites at high temperature under air. Compos A 41:913–918

    Article  Google Scholar 

  77. Momon S, Godin N, Reynaud P, R’Mili M, Fantozzi G (2012) Unsupervised and supervised classification of AE data collected during fatigue test on CMC at high temperature. Compos A 43:254–260

    Article  Google Scholar 

  78. Racle E, Godin N, Reynaud P, Fantozzi G (2017) Fatigue lifetime of ceramic matrix composites at intermediate temperature by acoustic emission. Materials 10(6):657

    Google Scholar 

  79. Moevus M, Rouby D, Godin N, R’Mili M, Reynaud P, Fantozzi G, Farizy G (2008) Analysis of damage mechanisms and associated acoustic emission in two SiC/[Si-B-C] composites exhibiting different tensile behaviours. Part II: Unsupervised acoustic emission data clustering. Compos Sci Technol 68:1258–1265

    Google Scholar 

  80. Hattori K, Takahashi M (1999) A new nearest-neighbor rule in the pattern classification problem. Pattern Recogn 32:425–432

    Article  Google Scholar 

  81. Maillet E, Godin N, R’Mili M, Reynaud P, Lamon J, Fantozzi G (2012) Analysis of acoustic emission energy release during static fatigue tests at intermediate temperatures on ceramic matrix composites: towards rupture time prediction. Comp Sci Technol 72:1001–1007

    Article  Google Scholar 

  82. Maillet E, Godin N, R’Mili M, Reynaud P, Fantozzi G, Lamon J (2014) Real-time evaluation of energy attenuation: A novel approach to acoustic emission analysis for damage monitoring of ceramic matrix composites. J Eur Ceram Soc 34(7):1673–1679

    Article  Google Scholar 

  83. Minak G, Morelli P, Zucchelli A (2009) Fatigue residual strength of circular laminate graphite–epoxy composite plates damaged by transverse load. Compos Sci Technol 69(9):1358–1363

    Article  Google Scholar 

  84. Morizet N, Godin N, Tang J, Maillet E, Fregonese M, Normand B (2016) Classification of acoustic emission signals using wavelets and Random Forests: application to localized corrosion. Mech Syst Signal Process 70–71:1026–1037

    Article  Google Scholar 

  85. Deschanel S, Vanel L, Vigier G, Godin N, Ciliberto S (2009) Experimental study of crackling noise: conditions on power law scaling correlated to fracture precursors. J Stat Mech Theory Exp

    Google Scholar 

  86. Bufe CG, Varnes DG (1993) Predictive modeling of the seismic cycle of the Greater San Francisco Bay Region. J Geophys Res 98:9871–9883

    Article  Google Scholar 

  87. Aggelis DG, Matikas T (2012) Effect of plate wave dispersion on the acoustic emission parameters in metals. Comput Struct 98–9:17–22

    Article  Google Scholar 

  88. Maillet E, Baker C, Morscher GN, Pujar VV, Lemanski JR (2015) Feasibility and limitations of damage identification in composite materials using acoustic emission. Compos A Appl Sci Manuf 75:77–83

    Article  Google Scholar 

  89. Sause MGR, Horn S (2010) Simulation of acoustic emission in planar carbon fibre reinforced plastic specimens. J Nondestr Eval 29:123–142

    Article  Google Scholar 

  90. Ben KW, Jezzine K, Hello G, Grondel S (2012) Analytical modelling of acoustic emission from buried or surface-breaking cracks under stress. J Phys: Conf Ser 353:012016

    Google Scholar 

  91. Guel N, Hamam Z, Godin N, Caty O, Reynaud P, Bouillon F, Paillassa A (2020) Data merging of AE sensors with different frequency resolution for the detection and identification of damage in oxide-based ceramic matrix composites. Materials 13:4691. https://doi.org/10.3390/ma13204691

    Article  Google Scholar 

  92. Hamam Z, Godin N, Fusco C, Monnier T (2019) Modelling of acoustic emission signals due to fibre break in a model composite carbon/epoxy: experimental validation and parametric study. Appl Sci 9:5124. https://doi.org/10.3390/app9235124

    Article  Google Scholar 

  93. Le Gall T, Monnier T, Fusco C, Godin N, Hebaz SE (2018) Towards quantitative acoustic emission by finite element modelling: contribution of modal analysis and identification of pertinent descriptors. Appl Sci 8(12):2557

    Google Scholar 

  94. Sause MG, Richler S (2015) Finite element modelling of cracks as acoustic emission sources. J Nondestr Eval 34(1):4

    Article  Google Scholar 

  95. Hamstad MA, O’Gallagher A, Gary J (1999) Modeling of buried acoustic emission monopole and dipole sources with a finite element technique. J Acoustic Emission 17(3–4):97–110

    Google Scholar 

  96. Ohtsu M, Ono K (1986) A generalized theory of acoustic emission and source representations of acoustic emission. J Acoustic Emission 1986(5):124–133

    Google Scholar 

  97. Hamstad M, O’Gallagher A, Gary J (2001) Effects of lateral plate dimensions on acoustic emission signals from dipole sources. J Acoust Emission 19:258–274

    Google Scholar 

  98. Suzuki H, Takemoto M, Ono K (1996) The fracture dynamics in a dissipative glass-fibre/epoxy model composite with the AE source simulation analysis. J Acoustic Emission 14(1):35–50

    Google Scholar 

  99. Le Gall T, Godin N, Monnier T, Fusco C, Hamam Z (2017) Acoustic emission modeling from the source to the detected signal: model validation and identification of relevant descriptors. J Acoustic Emission 34:S59–S64

    Google Scholar 

  100. Hamam Z, Godin N, Fusco C, Monnier T (2018) Modelling of fibre break as Acoustic Emission Source in SSFT: comparison with experimental results. J Acoustic Emission 35:S442–S455

    Google Scholar 

  101. Aggelis DG, Shiotani T, Papacharalampopoulos A, Polyzos D (2011) The influence of propagation path on elastic waves as measured by acoustic emission parameters. Struct Health Monitor 11(3):359–366

    Article  Google Scholar 

  102. Kharrat M, Placet V, Ramasso E, Boubakar L (2018) Influence of damage accumulation under fatigue loading on the AE-based health assessment of composite material: Wave distortion and AE-features evolution as a function of damage level. Compos A Appl Sci Manuf 109:615–627

    Article  Google Scholar 

  103. Carpinteri A, Lacidogna G, Accornero F, Mpalaskas AC, Matikas TE, Aggelis DG (2013) Influence of damage in the acoustic emission parameters. Cement Concr Compos 44:9–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Godin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Godin, N., Reynaud, P., Fantozzi, G. (2022). AE in Ceramics and Ceramic Matrix Composites. In: Grosse, C.U., Ohtsu, M., Aggelis, D.G., Shiotani, T. (eds) Acoustic Emission Testing. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-67936-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67936-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67935-4

  • Online ISBN: 978-3-030-67936-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics