Skip to main content

Acoustic Emission Monitoring of Metals

  • Chapter
  • First Online:
Acoustic Emission Testing

Abstract

This chapter introduces readers to the particularities associated with AE monitoring of metals and metallic structures through several example studies. The chapter begins with an overview of the failure mechanisms of metals, and a demonstration of AE’s potential as a diagnostic tool for understanding the evolution of dislocation structures during plastic deformation, up to the critical stage of crack initiation. The propagation of AE in metallic plate-like structures is then described alongside a study exemplifying the empirical determination of the dispersive properties of the primary Lamb wave modes in a 2 mm thick steel plate. As fatigue cracking is one of the most prominent causes of failure of metallic structures, three example studies are then described which highlight the ability of AE to detect, locate, and characterise cracking and crack growth. The first of these is a location study in which AE sources in a complex-geometry aluminium specimen subject to cyclic loading were located to within 3.42–20.2 mm of the cracking location, depending on the location method used. Two examples of AE characterisation approaches for identifying signals from fatigue cracking are then described; the first of which implements a principal component analysis of hit data collected from an aircraft landing gear component; and the second of which analyses the spectral information of wavestream recordings from a steel beam specimen. This chapter should educate the reader on a wide range of approaches to AE in metals, and further reading and examples can be found in the references contained throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann F, Kubin LP, Lepinoux, J. and Mughrabi, H. (1984) The dependence of dislocation microstructure on plastic strain amplitude in cyclically strained copper single crystals 32(5):715–725

    Google Scholar 

  • Aggelis DG, Matikas TE (2012) Effect of plate wave dispersion on the acoustic emission parameters in metals. Comput Struct 98–99:17–22

    Article  Google Scholar 

  • Agletdinov E, Merson D, Vinogradov A (2019) A new method of low amplitude signal detection and its application in acoustic emission. Appl Sci 10(1):73

    Article  Google Scholar 

  • Agletdinov E, Pomponi E, Merson D, Vinogradov A (2016) A novel Bayesian approach to acoustic emission data analysis. Ultrasonics 72:89–94

    Article  Google Scholar 

  • Akaike H (1974) Markovian representation of stochastic processess and its application to the analysis of autoregressive moving average processes. Ann Inst Stat Math 26(1):363–387

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Ghamdi AM, Zhechkov D, Mba D (2004) The use of Acoustic Emission for bearing defect identification and estimation of defect size. In: The 26th European conference on Acoustic Emission testing

    Google Scholar 

  • Aljets D, Chong A, Wilcox S, Holford KM (2012) Acoustic emission source location on large plate-like structures using a local triangular sensor array. Mech Syst Signal Process 30:91–102

    Article  Google Scholar 

  • Arakere NK (2016) Gigacycle rolling contact fatigue of bearing steels: a review. Int J Fatigue 93:238–249

    Article  Google Scholar 

  • Author (2015) Standard guide for determining the reproducibility of acoustic emission sensor response. ASTM international

    Google Scholar 

  • Basinski ZS, Basinski SJ (1985) Low amplitude fatigue of copper single crystals-III. PSB sections. Acta Metall 33(7):1319–1327

    Article  Google Scholar 

  • Bathias C (1996) A review of fatigue of aluminium matrix reinforced by particles or short fibers. Alum Alloys: Phys Mech Prop, Pts 1–3(217):1407–1412

    Google Scholar 

  • Bathias C (1999) There is no infinite fatigue life in metallic materials. Fatigue Fract Eng Mater Struct 22(7):559–565

    Article  Google Scholar 

  • Baxter MG, Pullin R, Holford KM, Evans SL (2007) Delta T source location for Acoustic Emission. Mech Syst Signal Process 21(3):1512–1520

    Article  Google Scholar 

  • Bendat JS, Piersol AG (1986) Random data : analysis and measurement procedures, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Berkovits A, Fang DN (1995) Study of fatigue-crack characteristics by Acoustic-Emission. Eng Fract Mech 51(3):401–410

    Article  Google Scholar 

  • Bhuiyan Y, Giurgiutiu V (2018) The signatures of Acoustic Emission waveforms from fatigue crack advancing in thin metallic plates. Smart Mater Struct 27(015019)

    Google Scholar 

  • Biancolini ME, Brutti C, Paparo G, Zanini A (2006) Fatigue cracks nucleation on steel, acoustic emission and fractal analysis. Int J Fatigue 28(12):1820–1825

    Article  Google Scholar 

  • Buttle DJSCB (1990) Characterization of fatigue of aluminum alloys by acoustic emission, Part I–II. J Acoust Emiss 9(4)

    Google Scholar 

  • Cox BNPWJMWL (1987) A statistical model of intermittent short fatigue crack growth. Fatigue Fract Eng Mater Struct 9(6):435–455

    Article  Google Scholar 

  • Davidson DL (1997) How fatigue cracks grow Interact with microstructure, and lose simulate. Fatigue Fract Mech 27:287–300

    Google Scholar 

  • Eaton MJ, Pearson MR, Byrne C, Prickett P, Pullin R, Holford KM, Emission A, Detection D (2014) Ensuring drilli quality in composite materials using acoustic emission, pp 22–26

    Google Scholar 

  • Eaton MJ, Pullin R, Holford KM (2012) Acoustic emission source location in composite materials using Delta T Mapping. Compos a Appl Sci Manuf 43(6):856–863

    Article  Google Scholar 

  • Ebener H (1991) Acoustic-Emission and the Bauschinger effect in Cu single-crystals. Scr Metall Mater 25(9):2035–2040

    Article  Google Scholar 

  • Eftekharnejad B, Addali A, Mba D (2012) Shaft crack diagnostics in a gearbox. Appl Acoust 73(8):723–733

    Article  Google Scholar 

  • Elforjani M, Mba D (2008) Detecting the onset propagation and location of non-artificial defects in a slow rotating thrust bearing with acoustic emission. Insight: Non-Destruct Test Cond Monit 50(5):264–268

    Google Scholar 

  • Elforjani M, Mba D (2009) Detecting natural crack initiation and growth in slow speed shafts with the Acoustic Emission technology. Eng Fail Anal 16(7):2121–2129

    Article  Google Scholar 

  • Elforjani M, Mba D (2010) Accelerated natural fault diagnosis in slow speed bearings with acoustic emission. Eng Fract Mech 77(1):112–127

    Article  Google Scholar 

  • Essmann U, Mughrabi H (1979) Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos Mag a 40(6):731–756

    Article  Google Scholar 

  • Gillis PP (1972) Dislocation motions and acoustic emissions. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Gorman MR (1990) Plate wave acoustic emission. J Acoust Soc Am 90:358–364

    Article  Google Scholar 

  • Grosse C (2000) Winpecker version 1.2. Instruction manual

    Google Scholar 

  • Hamstad MA, O’Gallagher A, Gary J (2002) A wavelet transform applied to acoustic emission signals: part 2: source location. J Acoust Emiss 20:62–82

    Google Scholar 

  • Hatano H (1976) Strain-rate dependence of acoustic-emission power and spectra in aluminum-alloys. J Appl Phys 47(9):3873–3876

    Article  Google Scholar 

  • Heiple CR, Carpenter SH (1987) Acoustic emission produced by deformation of metals and alloys—a review: part I and II. J. Acoustic Emission. 6(3):177–237

    Google Scholar 

  • Hensman J, Mills R, Pierce SG, Worden K, Eaton M (2010) Locating acoustic emission sources in complex structures using gaussian processes. Mech Syst Signal Process 24:211–223

    Article  Google Scholar 

  • Hensman J, Worden K, Pullin R, Eaton M, Holford KM, Evans SL (2008) A framework for detecting fatigue fractures using acoustic emission. In: Proceedings of the CM2008, Edinburgh, pp 618–627

    Google Scholar 

  • Hobson PD (1985) The growth of short fatigue cracks in medium carbon steel

    Google Scholar 

  • Holford KM, Eaton M, Clarke A, Pearson M, Featherston CA, Pullin R (2013) Approaches to acoustic emission monitoring with applicability to key components in wind turbines. In: 9th international workshop on structural health monitoring, Stanford University, USA, September

    Google Scholar 

  • Holford KM, Carter DC (1999) Acoustic emission source location. Key Eng Mater 167–168:162–171

    Article  Google Scholar 

  • Holt DL (1970) Dislocation cell formation in metals. J Appl Phys 41(8):3197–3201

    Article  Google Scholar 

  • Hsu NN, Breckenridge FR (1981) Characterisation and calibration of acoustic emission sensors. Mater Eval 39(1):60–68

    Google Scholar 

  • Irwin GR, Paris PC, Tada H (2000) The stress analysis of cracks handbook. Am Soc Mech Eng

    Google Scholar 

  • James DR, H., C. S. (1971) Relationship between acoustic emission and dislocation kinetics in crystalline solids. J Appl Phys 42(12):4685–5000

    Article  Google Scholar 

  • Juliano TM, Meegoda JN, Watts DJ (2013) Acoustic emission leak detection on a metal pipeline buried in sandy soil. J Pipeline Syst Eng Pract 4(3)

    Google Scholar 

  • Karimian SF, Modarres M, Bruck HA (2020) A new method for detecting fatigue crack initiation in aluminum alloy using acoustic emission waveform information entropy. Eng Fract Mech 223:106771

    Article  Google Scholar 

  • Khon H, Bashkov OV, Zolotareva SV, Solovev DB (2018) Modeling the propagation of elastic ultrasonic waves in isotropic and anisotropic materials when excited by various sources. Mater Sci Forum 945:926–931

    Article  Google Scholar 

  • Kishi T, Tanaka H, Horiuchi R, Obata Y, Aoki K (1975) Acoustic-Emission Peak of Bauschinger Effect. Scr Metall 9(10):1023–1026

    Article  Google Scholar 

  • Kohn DH, Ducheyne P, Awerbuch J (1992) Acoustic-emission during fatigue of Ti-6al-4v—incipient fatigue crack detection limits and generalized data-analysis methodology. J Mater Sci 27(12):3133–3142

    Article  Google Scholar 

  • Krishtal MA, Merson DL, Katsman AV, Vyboyschchik MA (1988) Influence of impurities on acoustic emission during deformation of high-purity copper. Phys Met Metall 66(3):169–175

    Google Scholar 

  • Kuribayashi K, Kishi T (1978) Acoustic emission behavior in Al–Mg solid solution. Mater Sci Eng 33(2):159–163

    Article  Google Scholar 

  • Kurz JH, Grosse CU, Reinhardt HW (2005) Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete. Ultrasonics 43(7):538–546

    Article  Google Scholar 

  • Laird C, Charsley P, Mughrabi H (1986) Low energy dislocation structures produced by cyclic deformation. Mater Sci Eng 81:433–450

    Article  Google Scholar 

  • Lamb H (1917) On waves in an elastic plate. Proc Roy Soc: Math, Phys Eng Sci 93:114–128

    MATH  Google Scholar 

  • Lazarev A, Vinogradov A (2009) About plastic instabilities in iron and power spectrum of acoustic emission. J Acoust Emiss 27:144–156

    Google Scholar 

  • Lemmen HJK, Alderliesten RC, Benedictus R, Hofstede JCJ, Rodi R (2008) The power of digital image correlation for detailed elastic-plastic strain measurements. In: WSEAS international conference on engineering mechanics, Heraklion, Crete Island, Greece

    Google Scholar 

  • Linderov M, Segel C, Weidner A, Biermann H, Vinogradov A (2014) Deformation mechanisms in austenitic TRIP/TWIP steels at room and elevated temperature investigated by acoustic emission and scanning electron microscopy. Mater Sci Eng, A 597:183–193

    Article  Google Scholar 

  • Lindley TC, Palmer IG, Richards CE (1978) Acoustic emission monitoring of fatigue crack growth. Mater Sci Eng 32(1):1–15

    Article  Google Scholar 

  • Lu Y, Gharghouri M, Taheri F (2008) Effect of texture on acoustic emission produced by slip and twinning in AZ31B magnesium alloy—part II: clustering and neural network analysis. Non-Destruct Test Eval 23(3):211–228

    Article  Google Scholar 

  • Lu Y, Taheri F, Gharghouri M (2011) Monotonic and cyclic plasticity response of magnesium alloy. Part I. Experimental response of a high-pressure die cast AM60B. Strain 47:e15–e24

    Article  Google Scholar 

  • Lu Y, Taheri F, Gharghouri M (2011) Monotonic and cyclic plasticity response of magnesium alloy. Part II. computational simulation and implementation of a hardening model. Strain 47:e25–e33

    Article  Google Scholar 

  • Lukas P, Kunz L (2004) Role of persistent slip bands in fatigue. Phil Mag 84(3–5):317–330

    Article  Google Scholar 

  • Mascaro B, Gibiat V, Bernadou M, Esquerre Y (2005) Acoustic emission of the drilling of carbon/epoxy composites. In: Forum acusticum, Budapest, Hungary, pp 2823–2827

    Google Scholar 

  • Matt HM, Lanza di Scalea F (2007) Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater Struct 16:1489–1499

    Article  Google Scholar 

  • McCrory JP, Pearson MR, Pullin R, Holford KM (2020) Optimisation of acoustic emission wavestreaming for structural health monitoring. Struct Health Monit 19(6):2007–2022

    Article  Google Scholar 

  • McCrory JP, Pullin R, Pearson MR, Eaton MJ, Featherston CA, Holford KM (2012) Effect of delta-T grid resolution on acoustic emission source location in GLARE. In: 30th European conference on acoustic emission testing & 7th international conference on acoustic emission. Granada, Spain

    Google Scholar 

  • Merson D, Nadtochiy M, Patlan V, Vinogradov A, Kitagawa K (1997) On the role of free surface in acoustic emission. Mater Sci Eng, A 234:587–590

    Article  Google Scholar 

  • Merson E, Vinogradov A, Merson DL (2015) Application of acoustic emission method for investigation of hydrogen embrittlement mechanism in the low-carbon steel. J Alloy Compd 645:S460–S463

    Article  Google Scholar 

  • Miguel MC, Vespignani A, Zapperi S, Weiss J, Grasso JR (2001) Intermittent dislocation flow in viscoplastic deformation. Nature 410(6829):667–671

    Article  Google Scholar 

  • Miller RK, Findlay RD, Carlos MF (2005) Acoustic emission testing, 3rd ed. In Miller RK, Hill EVK, Moore PO (eds) Columbus, pp 122–146

    Google Scholar 

  • Miller RK, McIntire P (1987) Acoustic emission testing. Non-destructive testing handbook. Am Soc Non-Destruct Test

    Google Scholar 

  • Moorthy V, Jayakumar T, Raj B (1995) Acoustic-emission technique for detecting microyeilding and macroyielding in solution-annealed Aisi type-316 Austenitic stainless-steel. Int J Press Vessels Pip 64(2):161–168

    Article  Google Scholar 

  • Mostafapour A, Davoodi S, Ghareaghaji M (2014) Acoustic emission source location in plates using wavelet analysis and cross time frequency spectrum. Ultrasonics 54:2055–2062

    Article  Google Scholar 

  • Mughrabi H (2002) On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue. In: International conference on fatigue in the very high cycle regime, Vienna, Austria, Jul 02–04. Blackwell Publishing Ltd, pp 755–764

    Google Scholar 

  • Mughrabi H (2015) Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Phil Trans R Soc A 373

    Google Scholar 

  • Natsik VD, Bibik ZI, Likhatskii SI, Nerubenko VV (1986) Acoustic emission during deformation of high-purity aluminum single crystals. Strength Mater 18(3):407–413

    Article  Google Scholar 

  • Natsik VD, Chishko KA (1978) Acoustic-emission at forming of dislocation pile-up by frank—read source. Fizika Tverdogo Tela 20(7):1933–1936

    Google Scholar 

  • Natsik VD, Chishko KA (1982) Acoustic-emission from dislocations emerging to the surface of a crystal. Sov Phys Acoust-Ussr 28(3):225–229

    Google Scholar 

  • Nazarchuk Z, Skalskyi V, Serhiyenko O (2017) Analysis of acoustic emission caused by internal cracks. In: Acoustic emission: methodology and application. Springer International Publishing, pp 75–105

    Google Scholar 

  • Niri ED, Farhidzadeh A, Salamone S (2015) Determination of the probability zone for acoustic emission source location in cylindrical shell structures. Mech Syst Signal Process 60–61:971–985

    Article  Google Scholar 

  • Ono K (2005a) Current understanding of mechanisms of acoustic emission. J Strain Anal Eng Des 40(1):1–15

    Article  Google Scholar 

  • Ono K (2005b) Current understanding of mechanisms of acoustic emission. J Strain Anal 40(1)

    Google Scholar 

  • Ono KWJY (1996) Pattern recognition analysis of acoustic emission from fatigue of 2024-T4 aluminum. Prog Acoust Emiss 237–242

    Google Scholar 

  • Paget CA, Atherton K, O'Brien E (2004) Modified acoustic emission generated in a full-scale aircraft wing subjected to simulated flight loading. In: Ye L, Mai Y-W, Su Z (eds) Composites technologies for 2020. Woodhead Publishing, pp 957–962

    Google Scholar 

  • Pearson MR, Eaton M, Featherston C, Pullin R (2017) Improved acoustic emission source location during fatigue and impact events in metallic and composite structures. Struct Health Monitor 16(4)

    Google Scholar 

  • Polak J, Vasek A (1994) Fatigue damage in polycrystalline copper below the fatigue limit. Int J Fatigue 16(6):403–408

    Article  Google Scholar 

  • Pollock AA, Yu JP, Ziehl P (2012) AE observations during cyclic testing of A572 steel laboratory specimens 2'. In: 30th European conference on acoustic emission testing & 7th international conference on acoustic emission, Granada, Spain

    Google Scholar 

  • Polák J, Helešic J, Obrtlík K (1990) Cyclic strain localization in copper single crystals and polycrystals. Scr Metall Mater 24(2):415–419

    Article  Google Scholar 

  • Polák J, Lepistö T, Kettunen P (1985) Surface topography and crack initiation in emerging persistent slip bands in copper single crystals 74(1):85–91

    Google Scholar 

  • Polák J, Mazánová V, Heczko M, Petráš R, Kuběna I, Casalena L, Man J (2017) The role of extrusions and intrusions in fatigue crack initiation. Eng Fract Mech 185:46–60

    Article  Google Scholar 

  • Pullin R, Clarke A, Eaton MJ, Pearson MR, Holford KM (2012) identification of the onset of cracking in gear teeth using acoustic emission. J Phys Conf Ser 382(1):12050–12050

    Article  Google Scholar 

  • Pullin R, Holford KM, Theobald P, Evans SL (2006) Experimental validation of dispersion curves in plates for acoustic emission. Adv Mater Res 13–14:53–60

    Article  Google Scholar 

  • Pullin R, Holford KM, Baxter MG (2005) Modal analysis of acoustic emission signals from artificial and fatigue crack sources in aerospace grade steel. Key Eng Mater 293–294:217–224

    Article  Google Scholar 

  • Pullin R, Pearson MR, Eaton MJ, Featherston CA, Holford KM, Clarke A (2013) Automated damage detection in composite components using acoustic emission. Key Eng Mater 569–570:80–87

    Article  Google Scholar 

  • Reu PL, Rogillio BR, Wellman GW (2007) Crack tip growth measurement using digital image correlation. In: 13th international conference on experimental mechanics, Alexandroupolis, Greece. Dordrecht, The Netherlands: Springer, pp 555–555

    Google Scholar 

  • Richeton T, Weiss J, Louchet F (2005) Breakdown of avalanche critical behaviour in polycrystalline plasticity. Nat Mater 4(6):465–469

    Article  Google Scholar 

  • Ritchie RO (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fract 100:58–83

    Article  Google Scholar 

  • Roberts TM, Talebzadeh M (2003a) Acoustic emission monitoring of fatigue crack propagation. J Constr Steel Res 59(6):695–712

    Article  Google Scholar 

  • Roberts TM, Talebzadeh M (2003b) Fatigue life prediction based on crack propagation and acoustic emission count rates. J Constr Steel Res 59(6):679–694

    Article  Google Scholar 

  • Rouby D, Fleischmann P (1978) Spectral analysis of acoustic-emission from aluminum single-crystals undergoing plastic-deformation. Phys Status Solidi A-Appl Res 48(2):439–445

    Article  Google Scholar 

  • Sause MGR, Linscheid FF, Wiehler M (2018) An experimentally accessible probability of detection model for acoustic emission measurements. J Nondestr Eval 37(2):17

    Article  Google Scholar 

  • Scala CM, Cousland SM (1983) Acoustic emission during fatigue crack propagation in the aluminium alloys 2024 and 2124. Mater Sci Eng 61(3):211–218

    Article  Google Scholar 

  • Schaarwachter W, Ebener H (1990) Acoustic-emission—a probe into dislocation dynamics in plasticity. Acta Metall Mater 38(2):195–205

    Article  Google Scholar 

  • Scholey JJ, Wisnom MR, Friswell MI, Pavier M, Aliha MR, Wilcox PD (2009) A generic technique for acoustic emission source location. J Acoust Emiss 27:291–298

    Google Scholar 

  • Scruby CB, Baldwin GR, Stacey KA (1985) Characterization of fatigue crack extension by quantitative acoustic-emission. Int J Fract 28(4):201–222

    Google Scholar 

  • Searle I, Ziola S, Rutherford P (1995) Crack detection in lap joints using acoustic emission. SPIE Proc Smart Struct Mater 2444:212–223

    Google Scholar 

  • Seleznev M, Weidner A, Biermann H, Vinogradov A (2021) Novel method for in situ damage monitoring during ultrasonic fatigue testing by the advanced acoustic emission technique. Int J Fatigue 142:105918

    Article  Google Scholar 

  • Sharma S (1996) Applied multivariable techniques. John Wiley and Sons, Oxford, UK

    Google Scholar 

  • Shehadeh M, Steel JA, Reuben RL (2006) Acoustic emission source location for steel pipe and pipeline applications: the role of arrival time estimation. Proc Inst Mech Eng Part E: J Proc Mech Eng 220(2):121–133

    Article  Google Scholar 

  • Shiwa M, Furuya Y, Yamawaki H, Ito K, Enoki M (2010) Fatigue process evaluation of ultrasonic fatigue testing in high strength steel analyzed by acoustic emission and non-linear ultrasonic. Mater Trans 51(8):1404–1408

    Article  Google Scholar 

  • Sison M Jr, J. C. D., Lozev, M. G. and Clemeña, G. G. (1998) Analysis of acoustic emissions from a steel bridge hanger. J Res Nondestruct Eval 10(3):123–145

    Article  Google Scholar 

  • Stanzl-Tschegg SE, Schönbauer B (2010) Mechanisms of strain localization, crack initiation and fracture of polycrystalline copper in the VHCF regime. Int J Fatigue 32(6):886–893

    Article  Google Scholar 

  • Surgeon M, Wevers M (1999) One sensor linear location of acoustic emission events using plate wave theories. Mater Sci Eng A 265

    Google Scholar 

  • Takeda R, Kaneko Y, Merson DL, Vinogradov A (2013) Cluster analysis of acoustic emissions measured during deformation of duplex stainless steels. Mater Trans 54(4):532–539

    Article  Google Scholar 

  • Tan CK, Irving P, Mba D (2007) A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission vibration and spectrometric oil analysis for spur gears. Mech Syst Signal Process 21:208–233

    Google Scholar 

  • Toutountzakis T, Mba D (2003) Observations of acoustic emission activity during gear defect diagnosis. NDT E Int 36(7):471–477

    Article  Google Scholar 

  • Vinogradov A, Danyuk AV, Merson DL, Yasnikov IS (2018) Probing elementary dislocation mechanisms of local plastic deformation by the advanced acoustic emission technique. Scr Mater 151:53–56

    Article  Google Scholar 

  • Vinogradov A, Lazarev A (2012) Continuous acoustic emission during intermittent plastic flow in α-brass. Scr Mater 66(10):745–748

    Article  Google Scholar 

  • Vinogradov A, Lazarev A, Linderov M, Weidner A, Biermann H (2013a) Kinetics of deformation processes in high-alloyed cast transformation-induced plasticity/twinning-induced plasticity steels determined by acoustic emission and scanning electron microscopy: influence of austenite stability on deformation mechanisms. Acta Mater 61(7):2434–2449

    Article  Google Scholar 

  • Vinogradov A, Orlov D, Danyuk A, Estrin Y (2013b) Effect of grain size on the mechanisms of plastic deformation in wrought Mg–Zn–Zr alloy revealed by acoustic emission measurements. Acta Mater 61(6):2044–2056

    Article  Google Scholar 

  • Vinogradov A, Merson DL, Patlan V, Hashimoto S (2003) Effect of solid solution hardening and stacking fault energy on plastic flow and acoustic emission in Cu–Ge alloys. Mater Sci Eng, A 341(1–2):57–73

    Article  Google Scholar 

  • Vinogradov A, Orlov D, Danyuk A, Estrin Y (2015) Deformation mechanisms underlying tension–compression asymmetry in magnesium alloy ZK60 revealed by acoustic emission monitoring. Mater Sci Eng, A 621:243–251

    Article  Google Scholar 

  • Vinogradov A, Patlan V, Hashimoto S, Kitagawa K (2002) Acoustic emission during cyclic deformation of ultrafine-grain copper processed by severe plastic deformation. Philos Mag A 82(2):317–335

    Article  Google Scholar 

  • Vinogradov A, Yasnikov IS, Estrin Y (2014) Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements. J Appl Phys 115(23):233506

    Article  Google Scholar 

  • Vinogradov A, Yasnikov IS, Merson DL (2019) Phenomenological approach towards modelling the acoustic emission due to plastic deformation in metals. Scr Mater 170:172–176

    Article  Google Scholar 

  • Vinogradov AV, Patlan V, Hashimoto S (2001) Spectral analysis of acoustic emission during cyclic deformation of copper single crystals. Philos Mag A 81(6):1427–1446

    Article  Google Scholar 

  • Wadley HNG, Mehrabian R (1984) Acoustic emission for materials processing: a review. Mater Sci Eng 65(2):245–263

    Article  Google Scholar 

  • Wadley HNG, Scruby CB, Shrimpton G (1981) Quantitative acoustic-emission source characterization during low-temperature cleavage and intergranular fracture. Acta Metall 29(2):399–414

    Article  Google Scholar 

  • Weidner A, Amberger D, Pyczak F, Schönbauer B, Stanzl-Tschegg S, Mughrabi H (2010) Fatigue damage in copper polycrystals subjected to ultrahigh-cycle fatigue below the PSB threshold. Int J Fatigue 32(6):872–878

    Article  Google Scholar 

  • Weidner A, Beyer R, Blochwitz C, Holste C, Schwab A, Tirschler W (2006) Slip activity of persistent slip bands in polycrystalline nickel. Mater Sci Eng, A 435–436:540–546

    Article  Google Scholar 

  • Weiss J, Carmen Miguel M (2004) Dislocation avalanche correlations. Mater Sci Eng, A 387–389:292–296

    Article  Google Scholar 

  • Winter AT (1974) A model for the fatigue of copper at low plastic strain amplitudes. Phil Mag 30(4):719–738

    Article  Google Scholar 

  • Xiao D, He T, Pan Q, Liu X, Wang J, Shan Y (2014) A novel acoustic emission beamformring method with two uniform linear arrays on plate-like structures. Ultrasonics 54

    Google Scholar 

  • Yan G, Tang J (2015) A Bayesian approach for localization of acoustic emission source in plate-like structures. Math Probl Eng 2015:1–14

    Google Scholar 

  • Yasnikov IS, Estrin Y, Vinogradov A (2017) What governs ductility of ultrafine-grained metals? a microstructure based approach to necking instability. Acta Mater 141(Supplement C):18–28

    Google Scholar 

  • Yasnikov IS, Vinogradov A, Estrin Y (2014) Revisiting the Considère criterion from the viewpoint of dislocation theory fundamentals. Scripta Mater 76:37–40

    Article  Google Scholar 

  • Zhang L, Ozevin D, He D (2017) A method to decompose the streamed acoustic emission signals for detecting embedded fatigue crack signals. J Appl Sci 8(1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. McCrory .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCrory, J.P., Vinogradov, A., Pearson, M.R., Pullin, R., Holford, K.M. (2022). Acoustic Emission Monitoring of Metals. In: Grosse, C.U., Ohtsu, M., Aggelis, D.G., Shiotani, T. (eds) Acoustic Emission Testing. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-67936-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67936-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67935-4

  • Online ISBN: 978-3-030-67936-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics