Skip to main content

A Comprehensive Review of CAD Systems in Ultrasound and Elastography for Breast Cancer Diagnosis

  • Chapter
  • First Online:
Computational Intelligence Methods for Super-Resolution in Image Processing Applications

Abstract

Since the causes of breast cancer remain unknown, early diagnosis can increase the survival rate and reduce the mortality rate. Screening is a powerful way to detect breast cancer (BC). Screening methods, including mammography, sonography, and elastography, are commonly utilized for early BC diagnosis. However, the medical image’s manual analysis is a highly challenging and time-consuming process and often leads to a disagreement between radiologists. Recently, computer-aided diagnosis (CAD) systems proved the potential for detecting and classifying BC with high accuracy. This text aims to assess the performance of ultrasound and elastography for the BC early detection. Many problems involved in BC detections arise, and different approaches, along with their strengths and drawbacks, are investigated. This survey also explores the selection of input features, classification techniques adopted, and performance indices used in each research work. From the examined literature, it is noticed that the artificial neural network (ANN) can support radiologists to make an accurate decision. Numerous imaging techniques help the physician’s decision-making at several theragnostic stages (including diagnosis evaluation, treatment choice, interventional assistance, and follow-up). This active research subject entails many efforts to exceed the current pixel resolution to the molecular level in several imaging modalities. The present usage and future usage of high-resolution (HR) images depend on intrinsically analyzing a massive number of images that are not easy to manage and process by either radiologists or surgeons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelwahed, N. M., & Eltoukhy, W. M. (2015). Computer aided system for breast cancer diagnosis in ultrasound images. Journal of Ecology of Health & Environment, 3(37), 71–76.

    Google Scholar 

  2. Abdel-Zaher, A. M., & Eldeib, A. M. (2016). Breast cancer classification using deep belief networks. Expert Systems with Applications, 46(38), 139–144.

    Article  Google Scholar 

  3. Agarap, A. F. M. (2018). On breast cancer detection: An application of machine learning algorithms on the Wisconsin diagnostic dataset. In Proceedings of the 2nd International Conference on Machine Learning and Soft Computing (Vol. 24, pp. 5–9).

    Chapter  Google Scholar 

  4. Alexe, G., Dalgin, G. S., Ganesan, S., Delisi, C., & Bhanot, G. (2007). Analysis of breast cancer progression using principal component analysis and clustering. Journal of Biosciences, 32(1), 1027–1039.

    Article  Google Scholar 

  5. American Cancer Society. (2019). Breast Cancer Facts & Figures 2019–2020. Atlanta: American Cancer Society, Inc. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2019-2020.pdf.

    Google Scholar 

  6. American Cancer Society. (2019). Cancer Facts & Figures (2019). Atlanta: American Cancer Society. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2019/cancer-facts-and-figures-2019.pdf.

    Google Scholar 

  7. Barr, R. G. (2019). Future of breast elastography. Ultrasonography, 38(2), 93. (16).

    Article  Google Scholar 

  8. Botticelli, A., Mazzotti, E., Di Stefano, D., Petrocelli, V., Mazzuca, F., La Torre, M., & Bonifacino, A. (2015). Positive impact of elastography in breast cancer diagnosis: An institutional experience. Journal of Ultrasound, 18(4), 321–327. (21).

    Article  Google Scholar 

  9. Bowles, D., & Quinton, A. (2016). The use of ultrasound in breast cancer screening of asymptomatic women with dense breast tissue: A narrative review. Journal of Medical Imaging and Radiation Sciences, 47(3), S21–S28). (12).

    Article  Google Scholar 

  10. Calóope, P. B., Medeiros, F. N., Marques, R. C., & Costa, R. C. (2004). A comparison of filters for ultrasound images. In International Conference on Telecommunications (pp. 1035–1040). Berlin, Heidelberg: Springer. (28).

    Google Scholar 

  11. Chang, J. M., Moon, W. K., Cho, N., Yi, A., Koo, H. R., Han, W., et al. (2011). Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Research and Treatment, 129(1), 89–97. (42).

    Article  Google Scholar 

  12. Chang, J. M., Won, J. K., Lee, K. B., Park, I. A., Yi, A., & Moon, W. K. (2013). Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions. American Journal of Roentgenology, 201(2), W347–W356.

    Article  Google Scholar 

  13. Chen, Y. L., Gao, Y., Chang, C., Wang, F., Zeng, W., & Chen, J. J. (2018). Ultrasound shear wave elastography of breast lesions: Correlation of anisotropy with clinical and histopathological findings. Cancer Imaging, 18(1), 11.

    Article  Google Scholar 

  14. Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299–317.

    Article  MATH  Google Scholar 

  15. Chiao, J. Y., Chen, K. Y., Liao, K. Y. K., Hsieh, P. H., Zhang, G., & Huang, T. C. (2019). Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine, 98(19), e15200.

    Article  Google Scholar 

  16. Choi, J. S., Han, B. K., Ko, E. S., Bae, J. M., Ko, E. Y., Song, S. H., et al. (2019). Effect of a deep learning framework-based computer-aided diagnosis system on the diagnostic performance of radiologists in differentiating between malignant and benign masses on breast ultrasonography. Korean Journal of Radiology, 20(5), 749–758.

    Article  Google Scholar 

  17. Christensen-Jeffries, K., Brown, J., Harput, S., Zhang, G., Zhu, J., Tang, M., Dunsby, C., & Eckersley, R. E. (2019). Poisson statistical model of ultrasound super-resolution imaging acquisition time. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 1246–1254.

    Article  Google Scholar 

  18. Christensen-Jeffries, K., Harput, S., Brown, J., Wells, P. N., Aljabar, P., Dunsby, C., et al. (2017). Microbubble axial localization errors in ultrasound super-resolution imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(11), 1644–1654.

    Article  Google Scholar 

  19. Dheeba, J., Singh, N. A., & Selvi, S. T. (2014). Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. Journal of Biomedical Informatics, 49, 45–52.

    Article  Google Scholar 

  20. Dobruch-Sobczak, K., & Nowicki, A. (2015). Role of shear wave sonoelastography in differentiation between focal breast lesions. Ultrasound in Medicine & Biology, 41(2), 366–374.

    Article  Google Scholar 

  21. Kanoulas, E., Butler, M., Rowley, C., Voulgaridou, V., Diamantis, K., Duncan, W. C., Mcneilly, A. S., Averkiou, M., Wijkstra, H., Mischi, M., Wilson, R. S., Lu, W., & Sboros, V. (2019). Super-resolution contrast-enhanced ultrasound methodology for the identification of in vivo vascular dynamics in 2D. Investigative Radiology, 54, 500.

    Article  Google Scholar 

  22. Evans, A., Whelehan, P., Thomson, K., Brauer, K., Jordan, L., Purdie, C., et al. (2012). Differentiating benign from malignant solid breast masses: Value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. British Journal of Cancer, 107(2), 224–229.

    Article  Google Scholar 

  23. Evans, A., Whelehan, P., Thomson, K., McLean, D., Brauer, K., Purdie, C., et al. (2010). Quantitative shear wave ultrasound elastography: Initial experience in solid breast masses. Breast Cancer Research, 12(6), R104.

    Article  Google Scholar 

  24. Gallardo-Caballero, R., García-Orellana, C. J., García-Manso, A., González-Velasco, H. M., & Macías-Macías, M. (2012). Independent component analysis to detect clustered microcalcification breast cancers. The Scientific World Journal, 2012, 1.

    Article  Google Scholar 

  25. Goddi, A., Bonardi, M., & Alessi, S. (2012). Breast elastography: a literature review. Journal of Ultrasound, 15(3), 192–198. (13).

    Article  Google Scholar 

  26. Gonzalez, R. C., & RE, W. (2002). Digital Image Processing, 2, 550–570.

    Google Scholar 

  27. Harput, S., Tortoli, P., Eckersley, R. J., Dunsby, C., Tang, M., Christensen-Jeffries, K., Ramalli, A., Brown, J., Zhu, J., Zhang, G., Leow, C. H., Toulemonde, M., & Boni, E. (2019). 3-D super-resolution ultrasound imaging with a 2-D sparse array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 269–277.

    Article  Google Scholar 

  28. He, S., Wu, Q. H., & Saunders, R. J. (2009). Breast cancer diagnosis using an artificial neural network trained by global search optimizer. Transactions of the Institute of Measurement and Control, 1–15.

    Google Scholar 

  29. Horsch, K., Giger, M. L., Venta, L. A., & Vyborny, C. J. (2001). Automatic segmentation of breast lesions on ultrasound. Medical Physics, 28(8), 1652–1659.

    Article  Google Scholar 

  30. Jensen, J. A., Ommen, M. L., Øygard, S. H., Schou, M., Sams, T., Stuart, M. B., et al. (2019). Three-dimensional super-resolution imaging using a row–column array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67(3), 538–546.

    Article  Google Scholar 

  31. Kim, H. J., Kim, S. M., Kim, B., La Yun, B., Jang, M., Ko, Y., & Cho, N. (2018). Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population. Scientific Reports, 8(1), 1–11.

    Google Scholar 

  32. Kim, J. H., Cha, J. H., Kim, N., Chang, Y., Ko, M. S., Choi, Y. W., & Kim, H. H. (2014). Computer-aided detection system for masses in automated whole breast ultrasonography: Development and evaluation of the effectiveness. Ultrasonography, 33(2), 105.

    Article  Google Scholar 

  33. Klotz, T., Boussion, V., Kwiatkowski, F., Fraissinette, V. D., et al. (2014). Shear wave elastography contribution in ultrasound diagnosis management of breast lesions. Diagnostic and Interventional Imaging, 95, 813–824.

    Article  Google Scholar 

  34. Liu, B., Cheng, H. D., Huang, J., Tian, J., Liu, J., & Tang, X. (2009). Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance. Ultrasound in Medicine & Biology, 35(8), 1309–1324.

    Article  Google Scholar 

  35. Liu, X. J., Zhu, Y., Liu, P. F., & Xu, Y. L. (2014). Elastography for breast cancer diagnosis: A useful tool for small and BI-RADS 4 lesions. Asian Pacific Journal of Cancer Prevention, 15(24), 10739–10743.

    Article  Google Scholar 

  36. Luke, G. P., Hannah, A. S., & Emelianov, S. Y. (2016). Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets. Nano Letters, 16(4), 2556–2559.

    Article  Google Scholar 

  37. Madjar, H. (2010). Role of breast ultrasound for the detection and differentiation of breast lesions. Breast Care, 5(2), 109–114.

    Article  Google Scholar 

  38. Marcano-Cedeño, A., Quintanilla-Domínguez, J., & Andina, D. (2011). WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Systems with Applications, 38(8), 9573–9579.

    Article  Google Scholar 

  39. Mehdy, M. M., Ng, P. Y., Shair, E. F., Saleh, N. I., & Gomes, C. (2017). Artificial neural networks in image processing for early detection of breast cancer. Computational and Mathematical Methods in Medicine., 2017, 1.

    Article  Google Scholar 

  40. Mert, A., Kılıç, N., Bilgili, E., & Akan, A. (2015). Breast cancer detection with reduced feature set. Computational and Mathematical Methods in Medicine, 2015, 1.

    Article  Google Scholar 

  41. Mitsuk, A. (2016). Breast cancer information for young women, Ph.D Thesis, a project for Terveysnetti.

    Google Scholar 

  42. Nahato, K. B., Harichandran, K. N., & Arputharaj, K. (2015). Knowledge mining from clinical datasets using rough sets and backpropagation neural network. Computational and Mathematical Methods in Medicine, 2015, 1.

    Article  Google Scholar 

  43. Pan, H. B. (2016). The role of breast ultrasound in early cancer detection. Journal of Medical Ultrasound, 24(4), 138–141.

    Article  Google Scholar 

  44. Paulin, F., & Santhakumaran, A. (2011). Classification of breast cancer by comparing back propagation training algorithms. International Journal on Computer Science and Engineering, 3(1), 327–332.

    Google Scholar 

  45. Rajaguru, H., & Prabhakar, S. K. (2017, October). Bayesian linear discriminant analysis for breast cancer classification. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 266–269). IEEE.

    Google Scholar 

  46. Ramya, S., & Nanda, S. (2017). Breast cancer detection and classification using ultrasound and ultrasound Elastography images. IRJET, 4, 596–601.

    Google Scholar 

  47. Rasmussen, E. B., Lawyer, S. R., & Reilly, W. (2010). Percent body fat is related to delay and probability discounting for food in humans. Behavioural Processes, 83(1), 23–30.

    Article  Google Scholar 

  48. Roganovic, D., Djilas, D., Vujnovic, S., Pavic, D., & Stojanov, D. (2015). Breast MRI, digital mammography and breast tomosynthesis: Comparison of three methods for early detection of breast cancer. Bosnian Journal of Basic Medical Sciences, 15(4), 64.

    Article  Google Scholar 

  49. Rouhi, R., Jafari, M., Kasaei, S., & Keshavarzian, P. (2015). Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Systems with Applications, 42(3), 990–1002.

    Article  Google Scholar 

  50. Sahiner, B., Chan, H. P., Roubidoux, M. A., Hadjiiski, L. M., Helvie, M. A., Paramagul, C., & Blane, C. (2007). Malignant and benign breast masses on 3D US volumetric images: Effect of computer-aided diagnosis on radiologist accuracy. Radiology, 242(3), 716–724.

    Article  Google Scholar 

  51. Sloun, R. V., Solomon, O., Bruce, M., Khaing, Z. Z., Eldar, Y. C., & Mischi, M. M. (2019). Deep learning for super-resolution vascular ultra sound imaging. In ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1055–1059).

    Chapter  Google Scholar 

  52. Uncu, Ö., & Türkşen, I. B. (2007). A novel feature selection approach: Combining feature wrappers and filters. Information Sciences, 177(2), 449–466.

    Article  MathSciNet  MATH  Google Scholar 

  53. Van Sloun, R. J., Solomon, O., Bruce, M., Khaing, Z. Z., Wijkstra, H., Eldar, Y. C., & Mischi, M. (2018). Super-resolution ultrasound localization microscopy through deep learning. arXiv preprint arXiv, 1804, 07661.

    Google Scholar 

  54. Veloz, A., Orellana, A., Vielma, J., Salas, R., & Chabert, S. (2011). Brain tumors: How can images and segmentation techniques help? Diagnostic Techniques and Surgical Management of Brain Tumors, 67.

    Google Scholar 

  55. Viessmann, O. M., Eckersley, R. J., Christensen-Jeffries, K., Tang, M. X., & Dunsby, C. (2013). Acoustic super-resolution with ultrasound and microbubbles. Physics in Medicine & Biology, 58(18), 6447.

    Article  Google Scholar 

  56. Weigert, J., & Steenbergen, S. (2012). The Connecticut experiment: The role of ultrasound in the screening of women with dense breasts. The Breast Journal, 18(6), 517–522.

    Article  Google Scholar 

  57. Xiao, Y., Zeng, J., Niu, L., Zeng, Q., Wu, T., Wang, C., et al. (2014). Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging. Ultrasound in Medicine & Biology, 40(2), 275–286.

    Article  Google Scholar 

  58. Youk, J. H., Gweon, H. M., & Son, E. J. (2017). Shear-wave elastography in breast ultrasonography: The state of the art. Ultrasonography, 36(4), 300.

    Article  Google Scholar 

  59. Youk, J. H., Gweon, H. M., Son, E. J., Chung, J., Kim, J. A., & Kim, E. K. (2013). Three-dimensional shear-wave elastography for differentiating benign and malignant breast lesions: Comparison with two- dimensional shear- wave elastography. European Radiology, 23(6), 1519–1527.

    Article  Google Scholar 

  60. Zahran, M. H., El-Shafei, M. M., Emara, D. M., & Eshiba, S. M. (2018). Ultrasound elastography: How can it help in differentiating breast lesions? The Egyptian Journal of Radiology and Nuclear Medicine, 49(1), 249–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshwari Rengarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rengarajan, R., Devasena M S, G., Govindasamy, G. (2021). A Comprehensive Review of CAD Systems in Ultrasound and Elastography for Breast Cancer Diagnosis. In: Deshpande, A., Estrela, V.V., Razmjooy, N. (eds) Computational Intelligence Methods for Super-Resolution in Image Processing Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-67921-7_4

Download citation

Publish with us

Policies and ethics