Skip to main content

The History (and Pre-history) of the Discovery and Chemistry of the Noble Gases

  • Chapter
  • First Online:
150 Years of the Periodic Table

Part of the book series: Perspectives on the History of Chemistry ((PHC))

  • 1241 Accesses

Abstract

The existence of the then-so-called inert gases was discovered over a short period of time in the 1890s; the demonstration that they were in fact not inert took place during an even shorter period of time, in 1962. This paper surveys the key events, as well as some of the earlier work that led up to them, of those two crucial episodes in the history of chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The work of Professor Hoppe was not stimulated by the beautiful investigations of Barlett on XePtF6, because the plans for the preparation of xenon fluorides were much older and go back to 1949, as I can testify.

  2. 2.

    In a later work (J. Chem Education 41, 174, 1964) during the discussion of XeF2 the name Hoppe is not mentioned once.

References

  1. Scerri E (2007) The periodic table: Its story and its significance. Oxford University Press, Oxford, chap. 5

    Google Scholar 

  2. Bartlett N, Sladky FO (1973) The chemistry of krypton, xenon and radon. In: Bailar JC Jr, Emeleus HJ, Nyholm R, Trotman-Dickinson AF (eds) Comprehensive inorganic chemistry, vol. 1. Pergamon Press, Oxford, Chapter 6, pp 213–330

    Google Scholar 

  3. Brock DS, Schrobilgen GJ, Žemva, B (2013) Noble-gas chemistry. In: Reedijk J, Poeppelmeier K (eds) Comprehensive inorganic chemistry II, vol. 1. Elsevier, Oxford, Chapter 25, pp 755–822

    Google Scholar 

  4. Cavendish H (1785) Experiments on air. Phil Trans Roy Soc (London) 75:372–384

    Google Scholar 

  5. Launay F (2008) The astronomer Jules Janssen—a globetrotter of celestial physics. Springer, New York, p 45

    Google Scholar 

  6. Lockyer JN (1868) Spectroscopic observations of the sun—No. II. Phil Trans Roy Soc (London) 159:425–444

    Google Scholar 

  7. Lockyer WJS (1920) Helium: Its discovery and applications. Nature (London) 105:360–363

    Article  CAS  Google Scholar 

  8. Lockyer JN (1897) The sun’s place in nature. Macmillan, London, pp 32–33

    Google Scholar 

  9. Thomson W (1871) Inaugural address of Sir William Thomson, LL.D., F.R.S., President. Nature (London) 4:262–270 (on p 268)

    Google Scholar 

  10. Kragh H (2009) The solar element: a reconsideration of helium’s early history. Ann Sci 66:157–182

    Article  Google Scholar 

  11. Hillebrand WF (1891) On the occurrence of nitrogen in uraninite and on the composition of uraninite in general. Bull US Geol Survey 78:43–79

    Google Scholar 

  12. Lockyer JN (1897) The sun’s place in nature. Macmillan, London, pp 36–38

    Google Scholar 

  13. Wolfenden JH (1969) The noble gases and the periodic table: Telling it like it was. J Chem Ed 46:569–576

    Article  CAS  Google Scholar 

  14. Lord Rayleigh (1892) Density of nitrogen. Nature (London) 46:512–513

    Article  Google Scholar 

  15. Lord Rayleigh (1893) On the densities of the principal gases. Proc Roy Soc (London) 53:134–149

    Google Scholar 

  16. Lord Rayleigh (1894) On an anomaly encountered in determinations of the density of nitrogen gas. Proc Roy Soc (London) 55:340–344

    CAS  Google Scholar 

  17. Brock WH (1992) The Norton history of chemistry. Norton, New York, pp 331–340

    Google Scholar 

  18. Ihde AJ (1964) The development of modern chemistry. Harper & Row, New York, pp 370–371

    Google Scholar 

  19. Travers MW (1956) A life of Sir William Ramsay, K.C.B., F.R.S. E. Arnold, London, p 110

    Google Scholar 

  20. Dewar, J (1894 August 16) The new element. The Times (London), p 3

    Google Scholar 

  21. Lord Rayleigh, Ramsay W (1895) Argon, a new constituent of the atmosphere. Proc Roy Soc London 57:265–287

    Article  Google Scholar 

  22. Lord Rayleigh, Ramsay W (1895) Argon, a new constituent of the atmosphere. Phil Trans Roy Soc (London) 186:187–241

    CAS  Google Scholar 

  23. Crookes W (1896) On the spectra of argon. Phil Trans Roy Soc (London) 186:243–251

    Google Scholar 

  24. Olszewski K (1896) The liquefaction and solidification of argon. Phil Trans Roy Soc (London) 186:253–257

    Google Scholar 

  25. Moissan H (1895) Action du fluor sur l’argon. C R Séances Acad Sci 120:290–296

    CAS  Google Scholar 

  26. Giunta CJ (2001) Argon and the periodic system: the piece that would not fit. Found Chem 3:105–128

    Article  CAS  Google Scholar 

  27. Mendeleeff D (1895) Professor Mendeleeff on argon. Nature 51:543

    Article  Google Scholar 

  28. Lord Rayleigh (1895) Argon. Roy Inst Proc 14:524–538

    Google Scholar 

  29. Ramsay W (1896) The gases of the atmosphere, 1st edn. Macmillan, London, pp 232–240

    Google Scholar 

  30. Ramsay W (1896) The gases of the atmosphere, 1st edn. Macmillan, London, p 219

    Google Scholar 

  31. Ramsay W (1895) Helium, a gaseous constituent of certain minerals. Part I. Proc Roy Soc (London) 58:80–89

    Google Scholar 

  32. Ramsay W, Collie JN, Travers M (1895) Helium, a constituent of certain minerals. J Chem Soc Trans 67:684–701

    Article  CAS  Google Scholar 

  33. Ramsay W (1897) An undiscovered gas. Science (New Series) 6:493–502

    CAS  Google Scholar 

  34. Ramsay W, Travers MW (1898) On a new constituent of atmospheric air. Proc Roy Soc (London) 63:405–408

    Google Scholar 

  35. Ramsay W, Travers MW (1898) On the companions of argon. Proc Roy Soc (London) 63:437–440

    Google Scholar 

  36. Ramsay W, Travers MW (1898) On the extraction from air of the companions of argon and neon. Report of the sixty-eighth meeting for the British Association for the Advancement of Science, Bristol, September 1898. John Murray, London, pp 828–830

    Google Scholar 

  37. Ramsay W, Travers MW (1901) Argon and its companions. Phil Trans Roy Soc (London) 197:47–89

    Google Scholar 

  38. Owens RB (1899) Thorium radiation. Phil Mag 48:360–387

    Article  CAS  Google Scholar 

  39. Rutherford E, Soddy F (1902) The radioactivity of thorium compounds. I. An investigation of the radioactive emanation. J Chem Soc, Trans 81:321–350

    Article  Google Scholar 

  40. Gray WW, Ramsay W (1911) The density of niton (“radium emanation”) and the disintegration theory. Proc Roy Soc A 84:536–550

    CAS  Google Scholar 

  41. Ramsay W (1915) The gases of the atmosphere, 4th edn. Macmillan, London

    Google Scholar 

  42. Ball P (2019) On the edge of the periodic table. Nature 565:552–555

    Article  CAS  PubMed  Google Scholar 

  43. Service, RF (1999) Berkeley crew bags element 118. Science 284:1751

    Article  Google Scholar 

  44. Dalton R (2002) The stars who fell to earth. Nature 420:728–729

    Article  CAS  PubMed  Google Scholar 

  45. YuTs Oganessian et al (2006) Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys Rev C 74:044602

    Article  CAS  Google Scholar 

  46. IUPAC (2015) Discovery and assignment of elements with atomic numbers 113, 115, 117 and 118. https://iupac.org/discovery-and-assignment-of-elements-with-atomic-numbers-113-115-117-and-118/. Accessed 31 Jan 2020

  47. Chapman K (2016) What it takes to make a new element. Chemistry World: https://www.chemistryworld.com/what-it-takes-to-make-a-new-element/1017677.article. Accessed 31 Jan 2020

  48. Nash CS (2005) Atomic and molecular properties of elements 112, 114, and 118. J Phys Chem A 109:3493–3500

    Article  CAS  PubMed  Google Scholar 

  49. Giuliani SA et al (2019) Colloquium: superheavy elements: oganesson and beyond. Rev Mod Phys 91:011001

    Article  CAS  Google Scholar 

  50. Berthelot M (1895) Essais pour faire entrer l’argon en combinaison chimique. C R Séances Acad Sci 120:581–585

    CAS  Google Scholar 

  51. Laszlo P, Schrobilgen GJ (1988) One or several pioneers? The discovery of noble-gas compounds. Angew Chem Int Ed Engl 27:479–489

    Article  Google Scholar 

  52. Oddo G (1933) Sul potere di combinarsi dei cripton e dello xenon: due lettere inedite del prof. W. Ramsay. Gazz Chim Ital 63:380–395

    CAS  Google Scholar 

  53. Kossel W (1916) Über Molekülbildung als Frage des Atombaus. Ann Phys (Leipzig) 49:229–362

    Article  CAS  Google Scholar 

  54. Von Antropoff A, Weil K, Frauenhof H (1932) Die Gewinnung von Halogenverbindungen der Edelgase. Naturwissenschaften 20:688–689

    Article  Google Scholar 

  55. Paneth F (1924) Über die heutige Schreibweise des periodischen Systems der Elemente. Angew Chem 37:421–422

    Article  CAS  Google Scholar 

  56. Pauling L (1933) The formulas of antimonic acid and the antimonates. J Am Chem Soc 55:1895–1900

    Article  CAS  Google Scholar 

  57. Letter from L. Pauling to F. Allen, September 13, 1932. Courtesy of the Ava Helen and Linus Pauling Papers, Oregon State University Libraries

    Google Scholar 

  58. Yost DM, Kaye AL (1933) An attempt to prepare a chloride or fluoride of xenon. J Am Chem Soc 55:3890–3892

    Article  CAS  Google Scholar 

  59. Labinger JA (2013) Up from generality: How inorganic chemistry finally became a respectable field. Springer, Dordrecht, pp 33–48

    Google Scholar 

  60. Labinger JA (2015) Why isn’t noble gas chemistry 30 years older? The failed (?) 1933 experiment of Yost and Kaye. Bull Hist Chem 40:29–36

    CAS  Google Scholar 

  61. Pauling L (1947) General chemistry: An introduction to descriptive chemistry and modern chemical theory. W.H. Freeman, San Francisco, p 67

    Google Scholar 

  62. Bartlett N (1962) Xenon hexafluoroplatinate(V) Xe+PtF6. Proc Chem Soc London: 218

    Google Scholar 

  63. Graham L, Graudjys O, Jha NK, Bartlett N (2000) Concerning the nature of XePtF6. Coord Chem Rev 197:321–334

    Article  CAS  Google Scholar 

  64. Letter from W. Klemm to H. H. Hyman, June 10, 1964, translated by G. S. Girolami

    Google Scholar 

  65. Hoppe R, Dähne W, Mattauch H, Rödder K (1962) Fluorination of xenon. Angew Chem Int Ed Engl 1:599

    Article  Google Scholar 

  66. Claasen HH, Selig H, Malm JG (1962) Xenon tetrafluoride. J Am Chem Soc 84:3593

    Article  Google Scholar 

  67. Smith DF (1963) Xenon difluoride. J Chem Phys 38:270–271

    Article  CAS  Google Scholar 

  68. Hyman HH (ed) (1963) Noble-gas compounds. University of Chicago Press, Chicago

    Google Scholar 

  69. Fields PR, Stein L, Zirin MH (1963) Radon fluoride: further tracer experiments with radon. In: Hyman HH (ed) Noble-gas compounds. University of Chicago Press, Chicago, pp 113–119

    Google Scholar 

  70. Streng AG, Kirshenbaum AD, Streng LV, Grosse AV (1963) Preparation of rare-gas fluorides and oxyfluorides by the electric-discharge method and their properties. In: Hyman HH (ed) Noble-gas compounds. University of Chicago Press, Chicago, pp 73–80

    Google Scholar 

  71. Lehman JF, Mercier HPA, Schrobilgen GJ (2002) The chemistry of krypton. Coord Chem Rev 233–234:1–39

    Article  Google Scholar 

  72. Grochala W (2007) Atypical compounds of gases, which have been called “noble”. Chem Soc Rev 36:1632–1655

    Article  CAS  PubMed  Google Scholar 

  73. Seppelt K (2003) Metal-xenon complexes. Z Anorg Allg Chem 629:2427–2430

    Article  CAS  Google Scholar 

  74. Hope EG (2013) Coordination chemistry of the noble gases and noble gas fluorides. Coord Chem Rev 257:902–909

    Article  CAS  Google Scholar 

  75. Ramsay W (1896) The gases of the atmosphere, 1st edn. Macmillan, London, p 169

    Google Scholar 

  76. Ramsay W (1896) The gases of the atmosphere, 1st edn. Macmillan, London, p 158

    Google Scholar 

Download references

Acknowledgements

I thank Greg Girolami for calling my attention to the Klemm letter and providing his translation thereof; I also am indebted to a reviewer and the editors for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay A. Labinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Labinger, J.A. (2021). The History (and Pre-history) of the Discovery and Chemistry of the Noble Gases. In: Giunta, C.J., Mainz, V.V., Girolami, G.S. (eds) 150 Years of the Periodic Table. Perspectives on the History of Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-67910-1_12

Download citation

Publish with us

Policies and ethics