Skip to main content

Stability Analyses of Hypersonic, Conical Flows with Transpiration Cooling

  • Conference paper
  • First Online:
IUTAM Laminar-Turbulent Transition

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 38))

  • 1504 Accesses

Abstract

The influence of transpiration cooling on second modes is analyzed in the present study. The investigations are carried out on a \(7^\circ \) half angle, blunted cone with a nose radius of \(5\,\text {mm}\). At a free stream Mach number of 7, various gas injection mass flow rates are applied. The goal is to have the cooling effect, without triggering the transition. Thus the investigations focused on low mass fluxes. As injection gas nitrogen is used. At the considered free stream conditions second modes are the dominant boundary-layer instabilities, which are consequently the focus of this study. The stability analyses are performed by the stability code NOLOT, NOnLOcal Transition analysis, of the German Aerospace Center (DLR). Beside the analyses of the influence of different mass injection on the frequencies and growth rates of the second modes and finally on the transition onset itself, different stability approaches are applied: Calculations based on Linear Stability Theory (LST) are compared against Parabolized-Stability-Equations (PSE) results. The numerical predictions are compared with experimental data, which were obtained in the DLR High Enthalpy Shock Tunnel Göttingen (HEG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akin, C., Marvin, J.: Combined effects of mass addition and nose bluntness on boundary-layer transition. AIAA J. 8(5), 857–863 (1970). https://doi.org/10.2514/3.5778

    Article  Google Scholar 

  2. Arnal, D., Schrauf, G., de Bruin, A., Seitz, A., Cousteix, J., Smith, P.: Transition for airfoils and wings. Technical Report Final report of GARTEUR AD (AG14), GARTEUR (1994)

    Google Scholar 

  3. Böhrk, H.: Transpiration-cooled hypersonic flight experiment: setup, flight measurement, and reconstruction. J. Spacecr. Rocket. 52(3), 674–683 (2015). https://doi.org/10.2514/1.A33144. ISSN 0022-4650 V

  4. Böhrk, H., Wartemann, V., Eggers, T., Martinez Schramm, J., Wagner, A., Hannemann, K.: Shock tunnel testing of the transpiration-cooled heat shield experiment AKTiV. In: 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France (2012). AIAA-Paper 2012-5935

    Google Scholar 

  5. Bottin, B.: Aerothermodynamic model of an inductively-coupled plasma wind tunnel: numerical and experimental determination of the facility performance. Ph.D. thesis (1999)

    Google Scholar 

  6. Choudhari, M., Li, F., Paredes, P., Chang, C.L.: Boundary layer transition on hypersonic vehicles: effects of surface roughness and surface blowing (EN-AVT-289-04) (2017). https://doi.org/10.14339/STO-EN-AVT-289

  7. Cousteix, J., Arnal, D., Aupoix, B., Gleyzes, C.: Recent studies on transition and turbulence at onera-cert. In: 29th Aerospace Science Meeting (1991). AIAA 91-0332

    Google Scholar 

  8. Esser, B.: Die Zustandsgrößen im Stoßwellenkanal als Ergebnisse eines exakten Riemannlösers. Ph.D. thesis, TH Aachen (1991)

    Google Scholar 

  9. Fedorov, A., Soudakov, V., Leyva, I.: Stability analysis of high-speed boundary-layer flow with gas injection. In: 7th AIAA Theoretical Fluid Mechanics Conference, AIAA AVIATION Forum (2014). https://doi.org/10.2514/6.2014-2498. AIAA 2014-2498

  10. Hannemann, K., Martinez Schramm, J., Wagner, A., Ponchio Camillo, G.: The high enthalpy shock tunnel Göttingen (HEG) of the German aerospace center (DLR). J. Large-Scale Res. Facil. 4(A133) (2018). https://doi.org/10.17815/jlsrf-4-168

  11. Hannemann, V.: Numerical investigation of an effusion cooled thermal protection material. In: ICCFD4 (2006)

    Google Scholar 

  12. Hein, S., Bertolotti, F.P., Simen, M., Hanifi, A., Henningson, D.: Linear nonlocal instability analysis—the linear NOLOT code. Technical Report IB-223-94 A56, DLR (1994)

    Google Scholar 

  13. Jewell, J.: Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects. Ph.D. thesis, California Institute of Technology (2014)

    Google Scholar 

  14. Jewell, J., Leyva, I., Parziale, N., Shepherd, J.: Effect of gas injection on transition in hypervelocity boundary layers. In: 28th International Symposium on Shock Waves (2012). https://doi.org/10.1007/978-3-642-25688-2_111

  15. Johnson, H., Gronvall, J., Candler, G.: Reacting hypersonic boundary layer stability with blowing and suction. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings (2009). https://doi.org/10.2514/6.2009-938. AIAA938-2009

  16. Kendall, R., Rindal, R., Bartlett, E.: Thermochemical ablation. In: AIAA Thermophysics Specialist Conference (1965). AIAA-Paper1965-642

    Google Scholar 

  17. Kim, S., Hassan, I.: Numerical study of film cooling scheme on a blunt-nosed body in hypersonic flow. J. Therm. Sci. Eng. Appl. 3(4), 1–7 (2011). https://doi.org/10.1115/1.4005052

  18. Kütemeyer, M., Helmreich, T., Rosiwal, S., Koch, D.: Influence of zirconium-based alloys on manufacturing and mechanical properties of ultra high temperature ceramic matrix composites. Adv. Appl. Ceram. 117(S1), 62–69 (2018). https://doi.org/10.1080/17436753.2018.1509810

    Article  Google Scholar 

  19. Leyva, I., Laurence, S., Beierholm, A., Hornung, H., Wagnild, R., Candler, G.: Transition delay in hypervelocity boundary layers by means of CO2/Acoustic instability interactions. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition (2009). https://doi.org/10.2514/6.2009-1287

  20. Li, F., Choudhari, M., Chang, C., White, J.: Effects of injection on the instability of boundary layers over hypersonic configurations. Phys. Fluids 25(10), 104107 (2013). https://doi.org/10.1063/1.4825038

  21. Loehle, S., Staebler, T., Reimer, T., Cefalu, A.: Photogrammetric surface analysis of ablation processes in high-enthalpy air plasma flow. AIAA J. 53(11), 3187–3195 (2015). https://doi.org/10.2514/1.J053728

  22. Mack, A., Hannemann, V.: Validation of the unstructured DLR-TAU-Code for hypersonic flows. In: 32nd AIAA Fluid Dynamics Conference and Exhibit, St. Louis, Missouri (2002). AIAA 2002-3111

    Google Scholar 

  23. Mack, L.M.: Boundary layer linear stability theory. In: AGARD—Special Course on Stability and Transition of Laminar Flow, vol. R-709, pp. 2–1–2–71 (1984)

    Google Scholar 

  24. McManus, H.L., Springer, G.S.: High temperature thermomechanical behavior of carbon-phenolic and carbon-carbon composites, 1. analysis. J. Compos. Mater. 26(2), 206–229 (1992). https://doi.org/10.1177/002199839202600204

  25. Miró Miró, F., Dehairs, P., Pinna, F., Gkolia, M., Masutti, D., Regert, T., Chazot, O.: Effect of wall blowing on hypersonic boundary-layer transition. AIAA J. 57(4), 1567–1578 (2018). https://doi.org/10.2514/1.J057604

  26. Morkovin, M.V.: Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies. techreport AFFDL-TR-68-149, Air Force Flight Dynamics Lab. DTIC citation AD-686178 (1969)

    Google Scholar 

  27. Ponchio Camillo, G., Wagner, A., Wartemann, V., Dittert, C., Leroy, B.: Experimental investigation of the effect of transpiration cooling on second mode instabilities in a hypersonic boundary layer. Exp. Fluids 61, 162 (2019)

    Google Scholar 

  28. Reimann, B., Hannemann, V.: Numerical investigation of double-cone and cylinder experiments in high enthalpy flows using the dlr tau code. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010). https://doi.org/10.2514/6.2010-1282

  29. Savino, R., Fumo, M., Silvestroni, L., Sciti, D.: Arc-Jet Testing on HfB2 and HfC-Based ultra-high temperature ceramic materials. J. Eur. Ceram. Soc. 28(9), 1899–1907 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.021

  30. Schmidt, B., Bitter, N., Hornung, H., Shepherd, J.: Experimental investigation of gas injection into the boundary layer on a slender body in supersonic flow. In: 7th AIAA Theoretical Fluid Mechanics Conference (2014). https://doi.org/10.2514/6.2014-2496

  31. Schneider, S.P.: Hypersonic boundary-layer transition with ablation and blowing. J. Spacecr. Rocket. 47(2), 225–237 (2010). https://doi.org/10.2514/1.43926

    Article  Google Scholar 

  32. Schwamborn, D., Gerhold, T., Heinrich, R.: The dlr tau-code: Recent applications in research and industry. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD (2006)

    Google Scholar 

  33. Shepherd, J.: Transition delay in hypervelocity boundary layers by means of co2/acoustic instability interaction. Technical Report, California Institute of Technology (2014)

    Google Scholar 

  34. Wagner, A.: Passive hypersonic boundary layer transition control using ultrasonically absorptive carbon-carbon ceramic with random microstructure. Ph.D. thesis, Katholieke Universiteit Leuven (2014)

    Google Scholar 

  35. Wagnild, R., Candler, G., Leyva, I., Jewell, J., Hornung, H.: Carbon dioxide injection for hypervelocity boundary layer stability. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings (2010). https://doi.org/10.2514/6.2010-1244

  36. Wartemann, V.: Mack-moden-dämpfung mittels mikroporöser oberflächen im hyperschall. Ph.D. thesis, Technische Universität Braunschweig (2014)

    Google Scholar 

  37. Wartemann, V., Ponchio Camillo, G., Reiter, P., Neumann, J., Wagner, A.: Influence of transpiration cooling on second mode instabilities investigated on hypersonic, conical flows. CEAS 11(3), 341–350 (2019). https://doi.org/10.1007/s12567-019-00249-9

  38. Wartemann, V., Wagner, A., Wagnild, R., Pinna, F., Miró, F.M., Tanno, H., Johnson, H.: High enthalpy effects on hypersonic boundary layer transition. J. Spacecr. Rocket. 56(2), 347–356 (2019). https://doi.org/10.2514/1.A34281

  39. Weihs, H.: Shefex ii mission overview and first results. In: 4th International ARA Days, Arcachon, France (2013)

    Google Scholar 

  40. Weihs, H., Hald, H., Reimer, T., Fischer, I.: Development of a cmc nose cap for x-38. In: 52nd International Astronautical Congress (2001). IAF-01-I.3.01

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Wartemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wartemann, V., Camillo, G.P., Neumann, J., Weber, A., Wagner, A. (2022). Stability Analyses of Hypersonic, Conical Flows with Transpiration Cooling. In: Sherwin, S., Schmid, P., Wu, X. (eds) IUTAM Laminar-Turbulent Transition. IUTAM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-67902-6_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67902-6_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67901-9

  • Online ISBN: 978-3-030-67902-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics